The aim of the present study was to distinguish between healthy children and those with epilepsy by electroencephalography (EEG). Two biomarkers including Hurst exponents (H) and Tsallis entropy (TE) were used to investigate the background activity of EEG of 10 healthy children and 10 with epilepsy. EEG artifacts were removed using Savitzky-Golay (SG) filter. As it hypothesize, there was a significant changes in irregularity and complexity in epileptic EEG in comparison with healthy control subjects using t-test (p< 0.05). The increasing in complexity changes were observed in H and TE results of epileptic subjects make them suggested EEG biomarker associated with epilepsy and a reliable tool for detection and identification of this di
... Show MoreGeotechnical engineering like any other engineering field has to develop and cope with new technologies. This article intends to investigate the spatial relationships between soil’s liquid limit (LL), plasticity index (PI) and Liquidity index (LI) for particular zones of Sulaymaniyah City. The main objective is to study the ability to produce digital soil maps for the study area and determine regions of high expansive soil. Inverse Distance Weighting (IDW) interpolation tool within the GIS (Geographic Information System) program was used to produce the maps. Data from 592 boreholes for LL and PI and 245 boreholes for LI were used for this study. Layers were allocated into three depth ranges (1 to 2, 2 to 4 and 4 to 6)
... Show MoreIn recent years, the world witnessed a rapid growth in attacks on the internet which resulted in deficiencies in networks performances. The growth was in both quantity and versatility of the attacks. To cope with this, new detection techniques are required especially the ones that use Artificial Intelligence techniques such as machine learning based intrusion detection and prevention systems. Many machine learning models are used to deal with intrusion detection and each has its own pros and cons and this is where this paper falls in, performance analysis of different Machine Learning Models for Intrusion Detection Systems based on supervised machine learning algorithms. Using Python Scikit-Learn library KNN, Support Ve
... Show MoreMany carbonate reservoirs in the world show a tilted in originally oil-water contact (OOWC) which requires a special consideration in the selection of the capillary pressure curves and an understanding of reservoir fluids distribution while initializing the reservoir simulation models.
An analytical model for predicting the capillary pressure across the interface that separates two immiscible fluids was derived from reservoir pressure transient analysis. The model reflected the entire interaction between the reservoir-aquifer fluids and rock properties measured under downhole reservoir conditions.
This model retained the natural coupling of oil reservoirs with the aquifer zone and treated them as an explicit-region composite system
Recently, the phenomenon of the spread of fake news or misinformation in most fields has taken on a wide resonance in societies. Combating this phenomenon and detecting misleading information manually is rather boring, takes a long time, and impractical. It is therefore necessary to rely on the fields of artificial intelligence to solve this problem. As such, this study aims to use deep learning techniques to detect Arabic fake news based on Arabic dataset called the AraNews dataset. This dataset contains news articles covering multiple fields such as politics, economy, culture, sports and others. A Hybrid Deep Neural Network has been proposed to improve accuracy. This network focuses on the properties of both the Text-Convolution Neural
... Show MoreFace recognition, emotion recognition represent the important bases for the human machine interaction. To recognize the person’s emotion and face, different algorithms are developed and tested. In this paper, an enhancement face and emotion recognition algorithm is implemented based on deep learning neural networks. Universal database and personal image had been used to test the proposed algorithm. Python language programming had been used to implement the proposed algorithm.
ABSTRACT: BACKGROUND: The main goal of facelift surgery is to reduce the effect of aging by reposition of face soft tissue in to more youthful orientation. There are many methods for SMAS plication which had different design and vector of pull. AIM OF STUDY: To evaluate the effectiveness and longitivity of 7 shaped SMAS plication in facelift. PATIENT AND METHODS: From January 2020 to march 2021, 10 female patients with age (45-60) years were presented with facial sagging, those patients were subjected to subcutaneous facelift with 7 shaped SMAS plication with fat greft in Al-Shaheed Ghazi Al-Harri Hospital and Baghdad burn medical center at Baghdad medical complex. RESULTS: The average follow up period was 6 to 12 months. The mean operative
... Show MoreThis work implements the face recognition system based on two stages, the first stage is feature extraction stage and the second stage is the classification stage. The feature extraction stage consists of Self-Organizing Maps (SOM) in a hierarchical format in conjunction with Gabor Filters and local image sampling. Different types of SOM’s were used and a comparison between the results from these SOM’s was given.
The next stage is the classification stage, and consists of self-organizing map neural network; the goal of this stage is to find the similar image to the input image. The proposal method algorithm implemented by using C++ packages, this work is successful classifier for a face database consist of 20
... Show Moreالحمدُ للهِ رب العالمين ، والصلاة والسلام على نبيه الأمين محمد r وعلى آله الطيبين الطاهرين ، وأصحابه الغر الميامين:
تعد الصورة السمعية مفهوما بيانيا نجده في البلاغة العربية واضحاً مؤثرا، مؤديا دورا جوهريا في إيصال الفكرة التي يروم الأديب إيصالها إلى المتلقي ولا تبدو السمعية واضحة إلاّ إذا نظر إليها في حالة أدبيه تهز كيان الشاعر  
... Show More