Preferred Language
Articles
/
Sxctro0BVTCNdQwC3hjb
Secure Video Data Deduplication in the Cloud Storage Using Compressive Sensing
...Show More Authors

Cloud storage provides scalable and low cost resources featuring economies of scale based on cross-user architecture. As the amount of data outsourced grows explosively, data deduplication, a technique that eliminates data redundancy, becomes essential. The most important cloud service is data storage. In order to protect the privacy of data owner, data are stored in cloud in an encrypted form. However, encrypted data introduce new challenges for cloud data deduplication, which becomes crucial for data storage. Traditional deduplication schemes cannot work on encrypted data. Existing solutions of encrypted data deduplication suffer from security weakness. This paper proposes a combined compressive sensing and video deduplication to maximize deduplication ratios. Our approach uses data deduplication to remove identical copies of the video. Our experimental results show significant storage savings, while providing strong level security

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Dec 01 2019
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
Accounting measurement of strategic storage in light of government support and its implications for presentation and disclosure / proposed model: an analytical study at the General Company for Grain Trade
...Show More Authors

يؤدي عرض معلومات مضللة او محرفة ضمن القوائم المالية والتي تعد أهم مصادر المعلومات الموثوقة التي يُعول عليها لاتخاذ القرارات السليمة الى عدم قدرتها على عكس نتيجة النشاط والمركز المالي لها او اعمال الوحدة الاقتصادية لتلك الفترات الزمنية بصورة صادقة وعادلة نتيجة لنوعية المعلومات المفصح عنها في القوائم المالية لذلك زاد الاهتمام بتطوير الممارسات المحاسبية لتتضمن افصاحات كافية بغرض اعطائهم صورة صادقة وعادلة

... Show More
View Publication Preview PDF
Publication Date
Tue Mar 08 2022
Journal Name
Multimedia Tools And Applications
Comparison study on the performance of the multi classifiers with hybrid optimal features selection method for medical data diagnosis
...Show More Authors

View Publication
Scopus (3)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Tue Jan 19 2021
Journal Name
Isprs International Journal Of Geo-information
The Potential of LiDAR and UAV-Photogrammetric Data Analysis to Interpret Archaeological Sites: A Case Study of Chun Castle in South-West England
...Show More Authors

With the increasing demands to use remote sensing approaches, such as aerial photography, satellite imagery, and LiDAR in archaeological applications, there is still a limited number of studies assessing the differences between remote sensing methods in extracting new archaeological finds. Therefore, this work aims to critically compare two types of fine-scale remotely sensed data: LiDAR and an Unmanned Aerial Vehicle (UAV) derived Structure from Motion (SfM) photogrammetry. To achieve this, aerial imagery and airborne LiDAR datasets of Chun Castle were acquired, processed, analyzed, and interpreted. Chun Castle is one of the most remarkable ancient sites in Cornwall County (Southwest England) that had not been surveyed and explored

... Show More
View Publication
Scopus (25)
Crossref (17)
Scopus Clarivate Crossref
Publication Date
Mon Apr 03 2023
Journal Name
Journal Of Electronics,computer Networking And Applied Mathematics
Comparison of Some Estimator Methods of Regression Mixed Model for the Multilinearity Problem and High – Dimensional Data
...Show More Authors

In order to obtain a mixed model with high significance and accurate alertness, it is necessary to search for the method that performs the task of selecting the most important variables to be included in the model, especially when the data under study suffers from the problem of multicollinearity as well as the problem of high dimensions. The research aims to compare some methods of choosing the explanatory variables and the estimation of the parameters of the regression model, which are Bayesian Ridge Regression (unbiased) and the adaptive Lasso regression model, using simulation. MSE was used to compare the methods.

View Publication
Crossref
Publication Date
Thu Feb 01 2024
Journal Name
Baghdad Science Journal
Estimating the Parameters of Exponential-Rayleigh Distribution for Progressively Censoring Data with S- Function about COVID-19
...Show More Authors

The two parameters of Exponential-Rayleigh distribution were estimated using the maximum likelihood estimation method (MLE) for progressively censoring data. To find estimated values for these two scale parameters using real data for COVID-19 which was taken from the Iraqi Ministry of Health and Environment, AL-Karkh General Hospital. Then the Chi-square test was utilized to determine if the sample (data) corresponded with the Exponential-Rayleigh distribution (ER). Employing the nonlinear membership function (s-function) to find fuzzy numbers for these parameters estimators. Then utilizing the ranking function transforms the fuzzy numbers into crisp numbers. Finally, using mean square error (MSE) to compare the outcomes of the survival

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Tue Jul 01 2008
Journal Name
Journal Of The Faculty Of Medicine Baghdad
Analysis of Data Obtained From Chromosomal Studies Performed During the Period from 2000-2007 A Retrospective Study
...Show More Authors

Background: Generally, genetic disorders are a leading cause of spontaneous abortion, neonatal death, increased morbidity and mortality in children and adults as well. They a significant health care and psychosocial burden for the patient, the family, the healthcare system and the community as a whole. Chromosomal abnormalities occur much more frequently than is generally appreciated. It is estimated that approximately 1 of 200 newborn infants had some form of chromosomal abnormality. The figure is much higher in fetuses that do not survive to term. It is estimated that in 50% of first trimester abortions, the fetus has a chromosomal abnormality. Aim of the study: This study aims to shed some light on the results of chromosomal studies per

... Show More
View Publication
Crossref
Publication Date
Fri Mar 01 2024
Journal Name
Baghdad Science Journal
Exploring the Challenges of Diagnosing Thyroid Disease with Imbalanced Data and Machine Learning: A Systematic Literature Review
...Show More Authors

Thyroid disease is a common disease affecting millions worldwide. Early diagnosis and treatment of thyroid disease can help prevent more serious complications and improve long-term health outcomes. However, thyroid disease diagnosis can be challenging due to its variable symptoms and limited diagnostic tests. By processing enormous amounts of data and seeing trends that may not be immediately evident to human doctors, Machine Learning (ML) algorithms may be capable of increasing the accuracy with which thyroid disease is diagnosed. This study seeks to discover the most recent ML-based and data-driven developments and strategies for diagnosing thyroid disease while considering the challenges associated with imbalanced data in thyroid dise

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Aip Conference Proceedings
Study of (Zn0.7 Mn0.3-x Ag0.3 Fe2O4) ferrite nanoparticles synthesized by auto combustion method for NO2 gas sensing
...Show More Authors

View Publication
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Mon Apr 24 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Estimate the Parameters and Related Probability Functions for Data of the Patients of Lymph Glands Cancer via Birnbaum-Saunders Model
...Show More Authors

 In this paper,we estimate the parameters and related probability functions, survival function, cumulative distribution function , hazard function(failure rate) and failure  (death) probability function(pdf) for two parameters Birnbaum-Saunders distribution which is fitting the complete data for the patients of  lymph glands cancer. Estimating the parameters (shape and scale) using (maximum likelihood , regression quantile and shrinkage) methods and then compute the value of mentioned related probability  functions depending on sample from real data which describe the duration of survivor for patients who suffer from the lymph glands cancer based on diagnosis of disease or the inter of patients in a hospital for perio

... Show More
View Publication Preview PDF
Publication Date
Mon Mar 31 2025
Journal Name
The Iraqi Geological Journal
Evaluation of Machine Learning Techniques for Missing Well Log Data in Buzurgan Oil Field: A Case Study
...Show More Authors

The investigation of machine learning techniques for addressing missing well-log data has garnered considerable interest recently, especially as the oil and gas sector pursues novel approaches to improve data interpretation and reservoir characterization. Conversely, for wells that have been in operation for several years, conventional measurement techniques frequently encounter challenges related to availability, including the lack of well-log data, cost considerations, and precision issues. This study's objective is to enhance reservoir characterization by automating well-log creation using machine-learning techniques. Among the methods are multi-resolution graph-based clustering and the similarity threshold method. By using cutti

... Show More
View Publication Preview PDF
Crossref