Roller compacted concrete (RCC) is a special type of concrete with zero or even negative slump consistency. In this work, it had aimed to produce an RCC mix suitable for roads paving with minimum cost and better engineering properties so, different RCC mixes had prepared i.e. (M1, M2, M3, and M4) using specified percentages of micro natural silica sand powder (SSP) as partial replacement of (0%, 5%, 10%, and 20%) by weight of sulfate resistant Portland cement. Additionally, M-sand, crushed stone, filler, and water had been used. The results had obtained after 28 days of water curing. The control mix (M1) had satisfied the required
This study was conducted to determine the effects of concentration of hydrochloric acids, temperature, and time on the hydrolysis of soya proteins (defatted soya flour) by determining the value of total protein nitrogen concentration, and amino nitrogen concentration of protein, peptides, and amino acids, and then calculated the hydrolysis rate of proteins.
The variables of the conditions of hydrolysis process was achieved in this study with the following range value of tests parameter:
- Concentration of HCl solution ranged between 1-7 N,
- Hydrolysis temperature ranged between 35-95 °C, and
- The time of hydroly
Plastic soil exhibits unfavorited geotechnical properties (when saturation), which causes negative defects to engineering structures. Different attempts (included various materials) were conducted to proffer solutions to such defects by experimenting in practical ways. On one hand, these attempts aimed to improve the engineering characteristics of plastic soil, and on the other hand, to use problematic waste materials as a stabilizer, like cement kiln dust, and to reduce environmental hazards. This paper explored the shrinkage, plasticity, and strength behavior of plastic soil enhanced with cement dust. The cement dust contents were 0%, 5%, 10%, 15% and 20% by dry weight of soil. An experimental series of shrinkage and p
... Show MoreThis research studies the effect of adding five different percentages of polymer (2, 4, 6, 8, and 10% of cement weight) on cement mortar's fresh and hardened properties, which was cured at laboratory temperature for 7, 14, and 28 days. Workability increases with increasing polymer. The workability value was lowest (25.6 and 29.4) % in mixtures containing 2% and 4% of (SBR). Increasing polymer ratios significantly decreased mechanical properties (compressive and flexural strength). Therefore, the best results were at 2% SBR and 4% SBR at 28 days of age. An inverse relationship was recorded between the increase in SBR ratios and polymer-modified cement mortar's compressive and flexural strength values. In general, the high
... Show MoreIn this research, we have added nano anatase TiO2 as a partial replacement of Portland cement by a weight percentage of (0.25 to 1%) for the development of properties for protection against bacteria. The control mix was made by using "the cement to sand" proportion about (1: 2.75) with the "water to cement" proportion of (0.5) to study the structure, porosity, water absorption, density, mechanical properties, as well as anti-bacterial behavior. Inspections have been done such as scanning electron microscopy (SEM), and atomic force microscope (AFM) for mortar. Experimental results showed that after the addition of Nano powders in cement mortar, the structural properties improved significantly with the development of hydration o
... Show MoreCarbon dioxide geo-sequestration (CGS) into sediments in the form of (gas) hydrates is one proposed method for reducing anthropogenic carbon dioxide emissions to the atmosphere and, thus reducing global warming and climate change. However, there is a serious lack of understanding of how such CO2 hydrate forms and exists in sediments. We thus imaged CO2 hydrate distribution in sandstone, and investigated the hydrate morphology and cluster characteristics via x-ray micro-computed tomography in 3D in-situ. A substantial amount of gas hydrate (∼17% saturation) was observed, and the stochastically distributed hydrate clusters followed power-law relations with respect to their size distributions and surface area-volume relationships. The layer-
... Show MoreTwo simple, rapid, and useful spectrophotometric methods were suggest or the determination of sulphadimidine sodium (SDMS) with and without using cloud point extraction technique in pure form and pharmaceutical preparation. The first method was based on diazotization of the Sulphdimidine Sodium drug by sodium nitrite at 5 ºC, followed by coupling with α –Naphthol in basic medium to form an orange colored product . The product was stabilized and its absorption was measured at 473 nm. Beer’s law was obeyed in the concentration range of (1-12) μg∙ml-1. Sandell’s sensitivity was 0.03012 μg∙cm-1, the detection limit was 0.0277 μg∙ml-1, and the limit of Quantitation was 0.03605μg
... Show MoreRapid, reproducible and accurate method has been developed for the assay for of mebendazol (MBZ) residual assay. The method is based on alkaline hydrolysis of MBZ with sodium hydroxide then oxidation with N-bromosuccinimide (NBS) followed by coupling with 4-Bromoaniline (4-BA) to yield a highly colored product absorbed at maximum 434 nm. Regression analysis of linearity range was found (0.6-2.8) µg.ml-1. The optimum conditions that affect the oxidation were studied. The developed method was found to be precise with mean value of relative standard deviation (1.153- 1.303) and accurate with relative error (-0.5940-1.7821) .The calculated molar absorptivity and sandal sensitivity values of (29825 L.mol-1.cm
... Show MoreRapid, reproducible and accurate method has been developed for the assay for of mebendazol (MBZ) residual assay. The method is based on alkaline hydrolysis of MBZ with sodium hydroxide then oxidation with N-bromosuccinimide (NBS) followed by coupling with 4-Bromoaniline (4-BA) to yield a highly colored product absorbed at maximum 434 nm. Regression analysis of linearity range was found (0.6-2.8) µg.ml-1. The optimum conditions that affect the oxidation were studied. The developed method was found to be precise with mean value of relative standard deviation (1.153- 1.303) and accurate with relative error (-0.5940-1.7821) .The calculated molar absorptivity and sandal sensitivity values of (29825 L.mol-1.cm-1), 0.0099 µg.cm-2 respe
... Show MoreThe disposal of the waste material is the main goal of this investigation by transformation to high-fineness powder and producing self-consolidation concrete (SCC) with less cost and more eco-friendly by reducing the cement weight, taking into consideration the fresh and strength properties. The reference mix design was prepared by adopting the European guide. Five waste materials (clay brick, ceramic, granite tiles, marble tiles, and thermostone blocks) were converted to high-fine particle size distribution and then used as 5, 10, and 15% weight replacements of cement. The improvement in strength properties is more significant when using clay bricks compared to other activated waste