Various simple and complicated models have been utilized to simulate the stress-strain behavior of the soil. These models are used in Finite Element Modeling (FEM) for geotechnical engineering applications and analysis of dynamic soil-structure interaction problems. These models either can't adequately describe some features, such as the strain-softening of dense sand, or they require several parameters that are difficult to gather by conventional laboratory testing. Furthermore, soils are not completely linearly elastic and perfectly plastic for the whole range of loads. Soil behavior is quite difficult to comprehend and exhibits a variety of behaviors under various circumstances. As a result, a more realistic constitutive model is
... Show MoreIn this paper a prey - predator model with harvesting on predator species with infectious disease in prey population only has been proposed and analyzed. Further, in this model, Holling type-IV functional response for the predation of susceptible prey and Lotka-Volterra functional response for the predation of infected prey as well as linear incidence rate for describing the transition of disease are used. Our aim is to study the effect of harvesting and disease on the dynamics of this model.
Various simple and complicated models have been utilized to simulate the stress-strain behavior of the soil. These models are used in Finite Element Modeling (FEM) for geotechnical engineering applications and analysis of dynamic soil-structure interaction problems. These models either can't adequately describe some features, such as the strain-softening of dense sand, or they require several parameters that are difficult to gather by conventional laboratory testing. Furthermore, soils are not completely linearly elastic and perfectly plastic for the whole range of loads. Soil behavior is quite difficult to comprehend and exhibits a variety of behaviors under various circumstances. As a result, a more realistic constitutive model is
... Show MorePurpose: The research aims to estimate models representing phenomena that follow the logic of circular (angular) data, accounting for the 24-hour periodicity in measurement. Theoretical framework: The regression model is developed to account for the periodic nature of the circular scale, considering the periodicity in the dependent variable y, the explanatory variables x, or both. Design/methodology/approach: Two estimation methods were applied: a parametric model, represented by the Simple Circular Regression (SCR) model, and a nonparametric model, represented by the Nadaraya-Watson Circular Regression (NW) model. The analysis used real data from 50 patients at Al-Kindi Teaching Hospital in Baghdad. Findings: The Mean Circular Erro
... Show MorePOSSIBILITY OF APPLICATION THE BALANCED SCORECARD IN THE IRAQI INDUSTRIAL COMPANIES: A PROPOSED MODEL
This present paper aim at knowing the process of evaluating the training program that could be applied in Maysan Health office for it significance and importance in field of management and vocational staff preparations of high scientific experience in different fields of Health. The society of research includes staffs working in Maysan Health Office , of specialists , dentists, pharmacists, laboratories, nursing and administrators. Their number is 100 employees, the researcher has designed questionnaire by depending on "Kirkpatrick" for assessing the training . The researcher has used thorough survey and has entailed 90 questionnaire,
... Show MoreThe aim of this paper is to describe an epidemic model when two SI-Type of diseases are transmitted vertically as well as horizontally through one population. The population contains two subclasses: susceptible and infectious, while the infectious are divided into three subgroups: Those infected by AIDS disease, HCV disease, and by both diseases. A nonlinear mathematical model for AIDS and HCV diseases is Suggested and analyzed. Both local and global stability for each feasible equilibrium point are determined theoretically by using the stability theory of differential equations, Routh-Hurwitz and Gershgorin theorem. Moreover, the numerical simulation was carried out on the model parameters in order to determine their impact on the disease
... Show MoreThis paper deals with modelling and control of Euler-Bernoulli smart beam interacting with a fluid medium. Several distributed piezo-patches (actuators and/or sensors) are bonded on the surface of the target beam. To model the vibrating beam properly, the effect of the piezo-patches and the hydrodynamic loads should be taken into account carefully. The partial differential equation PDE for the target oscillating beam is derived considering the piezo-actuators as input controls. Fluid forces are decomposed into two components: 1) hydrodynamic forces due to the beam oscillations, and 2) external (disturbance) hydrodynamic loads independent of beam motion. Then the PDE is discretized usi