Preferred Language
Articles
/
ShdbZo8BVTCNdQwCfXbD
Detection of anti-Helicobacter pylori in patients with Multiple Sclerosis
...Show More Authors

To determine the relationship between Helicobacter pylori infection and Multiple Sclerosis (MS) disorder, 20 patients with MS aged (25-60) years have been investigated from the period of 2016/12/1 to 2017/3/1 and compared to 15 apparently healthy individuals. All study groups were carried out to measure anti H.pylori IgA and H.pylori IgG antibodies by enzyme linked immunosorbent assay (ELISA) technique. There was a significant elevation (p<0.05) in the concentration of anti H.pylori IgG and IgA antibodies (Abs) compared to control group, and there was no significant difference (p>0.05) in the concentration of IgA and IgG (Abs) of H.pylori according to gender, and there was no significant difference (p>0.05) in the concentration of IgA and IgG (Abs) of H.pylori according to gender and age. This result indicates that infection with H.pylori may play a role in the pathogenesis of MS.

Publication Date
Sun Oct 15 2023
Journal Name
Journal Of Yarmouk
Artificial Intelligence Techniques for Colon Cancer Detection: A Review
...Show More Authors

Publication Date
Tue Nov 19 2024
Journal Name
Aip Conference Proceedings
CT scan and deep learning for COVID-19 detection
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Tue Oct 18 2022
Journal Name
Ieee Access
Plain, Edge, and Texture Detection Based on Orthogonal Moment
...Show More Authors

Image pattern classification is considered a significant step for image and video processing. Although various image pattern algorithms have been proposed so far that achieved adequate classification, achieving higher accuracy while reducing the computation time remains challenging to date. A robust image pattern classification method is essential to obtain the desired accuracy. This method can be accurately classify image blocks into plain, edge, and texture (PET) using an efficient feature extraction mechanism. Moreover, to date, most of the existing studies are focused on evaluating their methods based on specific orthogonal moments, which limits the understanding of their potential application to various Discrete Orthogonal Moments (DOM

... Show More
Scopus (13)
Crossref (14)
Scopus Clarivate Crossref
Publication Date
Wed Apr 28 2021
Journal Name
2021 1st Babylon International Conference On Information Technology And Science (bicits)
Enhanced Twitter Community Detection using Node Content and Attributes
...Show More Authors

View Publication
Scopus (3)
Crossref (2)
Scopus Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Computers, Materials &amp; Continua
Credit Card Fraud Detection Using Improved Deep Learning Models
...Show More Authors

View Publication
Scopus (5)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Tue Oct 04 2022
Journal Name
Ieee Access
Plain, Edge, and Texture Detection Based on Orthogonal Moment
...Show More Authors

Image pattern classification is considered a significant step for image and video processing.Although various image pattern algorithms have been proposed so far that achieved adequate classification,achieving higher accuracy while reducing the computation time remains challenging to date. A robust imagepattern classification method is essential to obtain the desired accuracy. This method can be accuratelyclassify image blocks into plain, edge, and texture (PET) using an efficient feature extraction mechanism.Moreover, to date, most of the existing studies are focused on evaluating their methods based on specificorthogonal moments, which limits the understanding of their potential application to various DiscreteOrthogonal Moments (DOMs). The

... Show More
Publication Date
Tue Apr 30 2024
Journal Name
Iraqi Journal Of Science
Credit Card Fraud Detection Challenges and Solutions: A Review
...Show More Authors

     Credit card fraud has become an increasing problem due to the growing reliance on electronic payment systems and technological advances that have improved fraud techniques. Numerous financial institutions are looking for the best ways to leverage technological advancements to provide better services to their end users, and researchers used various protection methods to provide security and privacy for credit cards. Therefore, it is necessary to identify the challenges and the proposed solutions to address them.  This review provides an overview of the most recent research on the detection of fraudulent credit card transactions to protect those transactions from tampering or improper use, which includes imbalance classes, c

... Show More
Scopus (9)
Crossref (7)
Scopus Crossref
Publication Date
Sat Jul 31 2021
Journal Name
Iraqi Journal Of Science
A Decision Tree-Aware Genetic Algorithm for Botnet Detection
...Show More Authors

     In this paper, the botnet detection problem is defined as a feature selection problem and the genetic algorithm (GA) is used to search for the best significant combination of features from the entire search space of set of features. Furthermore, the Decision Tree (DT) classifier is used as an objective function to direct the ability of the proposed GA to locate the combination of features that can correctly classify the activities into normal traffics and botnet attacks. Two datasets  namely the UNSW-NB15 and the Canadian Institute for Cybersecurity Intrusion Detection System 2017 (CICIDS2017), are used as evaluation datasets. The results reveal that the proposed DT-aware GA can effectively find the relevant features from

... Show More
Scopus (5)
Crossref (2)
Scopus Crossref
Publication Date
Fri May 25 2018
Journal Name
Journal Of Physics: Conference Series
Partial purification of Leucine aminopeptidase (LAP) in Acromegalic Sample of Iraqi Patients
...Show More Authors

Publication Date
Sun Dec 05 2010
Journal Name
Baghdad Science Journal
Measuring the concentration of some hormones in patients sera of polycystic ovaries
...Show More Authors

Extensive evaluation of 76 women with polycystic ovary syndrome compared with 25 fertile women as control group was achieved by routine investigations and hormonal study of each female which were done in one period during the menstrual cycle. Then the women with PCOS have been divided into 2 groups according to their menstrual cycle (irregular menstrual cycle) during assessing their hormonal profiles as follow:- 1- (54) Patients with oligomenorrhea. 2- (22) Patients with menorrhea. This study shows that the women with PCOs have different clinical features taken from a history of disease of all of the women. Those features were distributed as follow: 57.92% of them suffer from hirsutism. 19.24% suffer from irregular menstr

... Show More
View Publication Preview PDF
Crossref