Melanoma, a highly malignant form of skin cancer, affects individuals of all genders and is associated with high mortality rates, especially in advanced stages. The use of tele-dermatology has emerged as a proficient diagnostic approach for skin lesions and is particularly beneficial in rural areas with limited access to dermatologists. However, accurately, and efficiently segmenting melanoma remains a challenging task due to the significant diversity observed in the morphology, pigmentation, and dimensions of cutaneous nevi. To address this challenge, we propose a novel approach called DenseUNet-169 with a dilated convolution encoder-decoder for automatic segmentation of RGB dermascopic images. By incorporating dilated convolution, our model improves the receptive field of the kernels without increasing the number of parameters. Additionally, we used a method called Copy and Concatenation Attention Block (CCAB) for robust feature computation. To evaluate the performance of our proposed framework, we utilized the International Skin Imaging Collaboration (ISIC) 2017 dataset. The experimental results demonstrate the reliability and effectiveness of our suggested approach compared to existing methodologies. Our framework achieved a high level of accuracy (98.38%), precision (96.07%), recall (94.32%), dice score (95.07%), and Jaccard score (90.45%), outperforming current techniques.
Background: Gray-scale sonography is generally
considered as a first-line diagnostic tool for patient with
suspected acute cholecystitis. It is suggested by gallstones,
Murphy's sign, thickening of the gallbladder wall and bile
sludging, but the specificity of these sonographic findings
are not as high as their sensitivity. Blood flow of the
gallbladder wall is increased in acute inflammation.
Objective: To evaluate the sensitivity and specificity of
power Doppler sonography and compared with conventional
color Doppler and gray-scale sonography in diagnosing
patients with acute cholecystitis.
Type of the study: This was a cross sectional study.
Patients and methods: The study was conducted t
Background: Acute radiodermatitis is a common side effect during and after radiotherapy course in breast cancer patients treated by radiotherapy. This study assess the frequency of acute radiodermatitis and record the predictive factors for acute radiodermatitis. Patients and Methods: A descriptive case series study conducted at Baghdad, Iraq from August 2020 to September 2021. 70 female scheduled for radiotherapy sessions enrolled in this study. sociodemographic data were recorded and Skin examination before radiotherapy and weekly till the end of the radiotherapy sessions was done to report the frequency, risk factors, clinical picture and grades of acute radiodermatitis based on The National Cancer Institute’s Common Terminology Crite
... Show MoreBackground Radiotherapy is one of the main modalities in the management of cancer along with chemotherapy and surgery. Despite its great benefit it has many side effects on many systems and organs including the skin. Objective To record the frequency, grades and types of acute cutaneous side effect in patients with pelvic tumors treated with radiotherapy, in order to report the risk factors and to find appropriate strategies for prevention and management. Patient and methods. Methods A prospective observational study was carried out in Baghdad Radiation and Nuclear Medicine Centre between August 2020 and August 2021.A total 70 patients were enrolled in this study.All patients had full history and full baseline skin exam and were ass
... Show MoreAcute decompensated heart failure (ADHF) is a leading cause of hospital admission and many factors are known to precipitate decompensation. We aimed to assess the decompensating factors of heart failure and the management of patients admitted to the emergency department (ED). A total of 107 patients were examined, all diagnosed with ADHF in the ED of the Baghdad Teaching Hospital, from June 2017 to December 2017, and presenting with decom¬pensation (pulmonary oedema, peripheral oedema, and fatigue). The mean patient age was 62.5 ± 9.8 years (range: 43–85 years); the majority of them were in their 7th decade (37.4%), and men were slightly more than women. Hy¬pertension was the most commonly associated comorbidity (68.2%), follow
... Show MoreRenal failure is a disease of the kidney, in which the renal excretory function is failed to process due to depression of the GFR. Renal failure is divided into acute and chronic depending on the period of the disease. The study was designed to investigate the level of oxidative stress in RF patients. Seventy-five subjects had enrolled in the study, who divided into three groups equally, in which they are healthy control, ARF patients, and CRF patients. The results had shown a significant
Finger vein recognition and user identification is a relatively recent biometric recognition technology with a broad variety of applications, and biometric authentication is extensively employed in the information age. As one of the most essential authentication technologies available today, finger vein recognition captures our attention owing to its high level of security, dependability, and track record of performance. Embedded convolutional neural networks are based on the early or intermediate fusing of input. In early fusion, pictures are categorized according to their location in the input space. In this study, we employ a highly optimized network and late fusion rather than early fusion to create a Fusion convolutional neural network
... Show MoreWireless Multimedia Sensor Networks (WMSNs) are networks of wirelessly interconnected sensor nodes equipped with multimedia devices, such as cameras and microphones. Thus a WMSN will have the capability to transmit multimedia data, such as video and audio streams, still images, and scalar data from the environment. Most applications of WMSNs require the delivery of multimedia information with a certain level of Quality of Service (QoS). This is a challenging task because multimedia applications typically produce huge volumes of data requiring high transmission rates and extensive processing; the high data transmission rate of WMSNs usually leads to congestion, which in turn reduces the Quality of Service (QoS) of multimedia appli
... Show MoreIdentifying breast cancer utilizing artificial intelligence technologies is valuable and has a great influence on the early detection of diseases. It also can save humanity by giving them a better chance to be treated in the earlier stages of cancer. During the last decade, deep neural networks (DNN) and machine learning (ML) systems have been widely used by almost every segment in medical centers due to their accurate identification and recognition of diseases, especially when trained using many datasets/samples. in this paper, a proposed two hidden layers DNN with a reduction in the number of additions and multiplications in each neuron. The number of bits and binary points of inputs and weights can be changed using the mask configuration
... Show MoreIn this paper, we focus on designing feed forward neural network (FFNN) for solving Mixed Volterra – Fredholm Integral Equations (MVFIEs) of second kind in 2–dimensions. in our method, we present a multi – layers model consisting of a hidden layer which has five hidden units (neurons) and one linear output unit. Transfer function (Log – sigmoid) and training algorithm (Levenberg – Marquardt) are used as a sigmoid activation of each unit. A comparison between the results of numerical experiment and the analytic solution of some examples has been carried out in order to justify the efficiency and the accuracy of our method.
... Show More