Melanoma, a highly malignant form of skin cancer, affects individuals of all genders and is associated with high mortality rates, especially in advanced stages. The use of tele-dermatology has emerged as a proficient diagnostic approach for skin lesions and is particularly beneficial in rural areas with limited access to dermatologists. However, accurately, and efficiently segmenting melanoma remains a challenging task due to the significant diversity observed in the morphology, pigmentation, and dimensions of cutaneous nevi. To address this challenge, we propose a novel approach called DenseUNet-169 with a dilated convolution encoder-decoder for automatic segmentation of RGB dermascopic images. By incorporating dilated convolution, our model improves the receptive field of the kernels without increasing the number of parameters. Additionally, we used a method called Copy and Concatenation Attention Block (CCAB) for robust feature computation. To evaluate the performance of our proposed framework, we utilized the International Skin Imaging Collaboration (ISIC) 2017 dataset. The experimental results demonstrate the reliability and effectiveness of our suggested approach compared to existing methodologies. Our framework achieved a high level of accuracy (98.38%), precision (96.07%), recall (94.32%), dice score (95.07%), and Jaccard score (90.45%), outperforming current techniques.
Wireless communications are characterized by their fastest growth in history, as they used ever-evolving and renewed technologies, which have allowed them to spread widely. Every day, communication technology introduces a new invention with features that differ from its predecessor. Bell Laboratories first suggested mobile wireless communication services to the general population in the late 1940s. Still, it wasn't easy at that time to use on a large scale due to its high costs. This paper aims to describe the state of cellular mobile networks; by comparing the sources of electromagnetic pollution caused by these networks, measure the level of power density in some residential areas, and compare them with international standards adopted in
... Show MoreEstimating an individual's age from a photograph of their face is critical in many applications, including intelligence and defense, border security and human-machine interaction, as well as soft biometric recognition. There has been recent progress in this discipline that focuses on the idea of deep learning. These solutions need the creation and training of deep neural networks for the sole purpose of resolving this issue. In addition, pre-trained deep neural networks are utilized in the research process for the purpose of facial recognition and fine-tuning for accurate outcomes. The purpose of this study was to offer a method for estimating human ages from the frontal view of the face in a manner that is as accurate as possible and takes
... Show MoreArtificial Neural networks (ANN) are powerful and effective tools in time-series applications. The first aim of this paper is to diagnose better and more efficient ANN models (Back Propagation, Radial Basis Function Neural networks (RBF), and Recurrent neural networks) in solving the linear and nonlinear time-series behavior. The second aim is dealing with finding accurate estimators as the convergence sometimes is stack in the local minima. It is one of the problems that can bias the test of the robustness of the ANN in time series forecasting. To determine the best or the optimal ANN models, forecast Skill (SS) employed to measure the efficiency of the performance of ANN models. The mean square error and
... Show MoreTransportation network could be considered as a function of the developmental level of the Iraq, that it is representing the sensitive nerve of the economic activity and the corner stone for the implementation of development plans and developing the spatial structure.
The main theme of this search is to show the characteristics of the regional transportation network in Iraq and to determine the most important effective spatial characteristics and the dimension of that effect negatively or positively. Further this search tries to draw an imagination for the connection between network as a spatial phenomenon and the surrounded natural and human variables within the spatial structure. This search aiming also to determine the nat
In this paper, a Modified Weighted Low Energy Adaptive Clustering Hierarchy (MW-LEACH) protocol is implemented to improve the Quality of Service (QoS) in Wireless Sensor Network (WSN) with mobile sink node. The Quality of Service is measured in terms of Throughput Ratio (TR), Packet Loss Ratio (PLR) and Energy Consumption (EC). The protocol is implemented based on Python simulation. Simulation Results showed that the proposed protocol provides better Quality of Service in comparison with Weighted Low Energy Cluster Hierarchy (W-LEACH) protocol by 63%.
The study is concern on determine the type of Candida spp.in leukemia patients that were infected with oral candidiasis as a result to their immune suppression (weekend immune system) due to their submission to radiation and chemotherapy treatment. The result showed that the most common isolates were C. guillermondii 19 which represent 31.66% of cases, then followed by C. itermedia 11 which represent 18.3%, while the less common isolates were for C. zeylamodes 3 which represent 5%.
This study was prepared to investigate the performance and behavior of concrete thrust blocks supporting pipe fittings. In the water distribution networks, it is always necessary to change the path of the pipes at different degrees or to create new branches. In these regions, an unbalanced force called the thrust force is generated. In order to counter this force, these regions are supported with concrete blocks. In this article, the system components (soil, pipe with its bend and thrust blocks) have been numerically modeled and simulated by the ABAQUS CAE/2019 software program in order to study the behavior and stability of the thrust block with different burial conditions (several b