Melanoma, a highly malignant form of skin cancer, affects individuals of all genders and is associated with high mortality rates, especially in advanced stages. The use of tele-dermatology has emerged as a proficient diagnostic approach for skin lesions and is particularly beneficial in rural areas with limited access to dermatologists. However, accurately, and efficiently segmenting melanoma remains a challenging task due to the significant diversity observed in the morphology, pigmentation, and dimensions of cutaneous nevi. To address this challenge, we propose a novel approach called DenseUNet-169 with a dilated convolution encoder-decoder for automatic segmentation of RGB dermascopic images. By incorporating dilated convolution, our model improves the receptive field of the kernels without increasing the number of parameters. Additionally, we used a method called Copy and Concatenation Attention Block (CCAB) for robust feature computation. To evaluate the performance of our proposed framework, we utilized the International Skin Imaging Collaboration (ISIC) 2017 dataset. The experimental results demonstrate the reliability and effectiveness of our suggested approach compared to existing methodologies. Our framework achieved a high level of accuracy (98.38%), precision (96.07%), recall (94.32%), dice score (95.07%), and Jaccard score (90.45%), outperforming current techniques.
This study proposes a hybrid predictive maintenance framework that integrates the Kolmogorov-Arnold Network (KAN) with Short-Time Fourier Transform (STFT) for intelligent fault diagnosis in industrial rotating machinery. The method is designed to address challenges posed by non-linear and non-stationary vibration signals under varying operational conditions. Experimental validation using the FALEX multispecimen test bench demonstrated a high classification accuracy of 97.5%, outperforming traditional models such as SVM, Random Forest, and XGBoost. The approach maintained robust performance across dynamic load scenarios and noisy environments, with precision and recall exceeding 95%. Key contributions include a hardware-accelerated K
... Show MoreBackground: Acute myocardial infarction
(AMI) is one of the most common diagnoses
in hospitalized patients. The stimulus that
initiates the acute inflammatory process in AMI
has not been identified. Conventional risk
factors account only for approximately half of
the patients with clinically apparent
atherosclerosis which can leads to AMI.
Recently a potential link between infectious
agents and atherosclerosis has been suggested
Objective: To find a possible association
between Helicobacter pylori (H. Pylori)
infection and AMI.
Method: We studied the prevalence of antiH. pylori antibodies in 94 patients who were
admitted with the diagnosis of AMI and a
similar number of healthy individuals w
Background: Leukemia is a group of malignant disorders
associated with increased numbers of blood white blood
cells. Acute leukemia occurs at all ages. Because zinc
influences many body systems and functions, zinc is an
essential nutrient for tissue growth, cellular division,
protein synthesis DNA and RNA replication it also ought to
play a critical role in the growth of tumor. In this study,
serum zinc was estimated in leukemic patients and
compared with healthy subjects.
Methods: The subjects in the present study were; fourtyfour depressed patients aged (14-48 year), thirty-one
apparently healthy subjects were selected as control group.
Their sex and age were comparable to that of patients.
Determin
Acute toxicity is a step to evaluate the toxicity of a substance. Rutin is one of the flavonoid compounds with a variety of pharmacological effects. The aim of the study is to calculate the lethal dose that affect fifty percent of the mice used in the experiment (LD50). Thirty Swiss albino male and 30 non-pregnant female mice have been divided equally and randomly into 5 treated groups and one control group (n=5) Rutin has been administered with concentrations 5, 2.5.1.25,0.625 and 0.312 g/kg administered as a single dose intraperitoneally (IP) while the control group received 1% DMSO (IP). Animals were observed for any morbidity and mortality for 14 days. After 14 days the animal blood collected for biochemical and hem
... Show MoreBackground: Chemokine (C-X-C motif) ligand (CXCL9) has an important role recruiting the T-lymphocytes and immune response after infection by inducing T-cells accumulation around the areas associated with infections. However, this role is poorly known in relation with Toxoplasma gondii infection and also in association with thyroid hormones, which the present study is focused on. Methods: Eighty-seven women were included in this study for the period between September 2021 and February 2022. Blood samples of uninfected healthy pregnant, in addition to aborted and pregnant women infected with toxoplasmosis, were collected. Sera were then obtained and stored at -10°C. Toxo-latex agglutination test was done, followed by detec
... Show MoreThe aim of this paper is to design artificial neural network as an alternative accurate tool to estimate concentration of Cadmium in contaminated soils for any depth and time. First, fifty soil samples were harvested from a phytoremediated contaminated site located in Qanat Aljaeesh in Baghdad city in Iraq. Second, a series of measurements were performed on the soil samples. The inputs are the soil depth, the time, and the soil parameters but the output is the concentration of Cu in the soil for depth x and time t. Third, design an ANN and its performance was evaluated using a test data set and then applied to estimate the concentration of Cadmium. The performance of the ANN technique was compared with the traditional laboratory inspecting
... Show MoreIn this paper, the memorization capability of a multilayer interpolative neural network is exploited to estimate a mobile position based on three angles of arrival. The neural network is trained with ideal angles-position patterns distributed uniformly throughout the region. This approach is compared with two other analytical methods, the average-position method which relies on finding the average position of the vertices of the uncertainty triangular region and the optimal position method which relies on finding the nearest ideal angles-position pattern to the measured angles. Simulation results based on estimations of the mobile position of particles moving along a nonlinear path show that the interpolative neural network approach outperf
... Show MoreClean water supply is one of the major factors contributing significantly to society’s socio-economic transformation by improving living standards, health, and increasing productivity. It is imperative to plan and construct appropriate water supply systems in modern society, which supply various segments of society with safe drinking water according to their requirements to ensure adequate and quality water supply. In the current study, here was an attempt to develop a model for geographic information systems to manage the assets of the water distribution networks in the Karrada region and to evaluate the network geometrically, and from the results of the engineering analysis of the
Transmission lines are generally subjected to faults, so it is advantageous to determine these faults as quickly as possible. This study uses an Artificial Neural Network technique to locate a fault as soon as it happens on the Doukan-Erbil of 132kv double Transmission lines network. CYME 7.1-Programming/Simulink utilized simulation to model the suggested network. A multilayer perceptron feed-forward artificial neural network with a back propagation learning algorithm is used for the intelligence locator's training, testing, assessment, and validation. Voltages and currents were applied as inputs during the neural network's training. The pre-fault and post-fault values determined the scaled values. The neural network's p
... Show More