Melanoma, a highly malignant form of skin cancer, affects individuals of all genders and is associated with high mortality rates, especially in advanced stages. The use of tele-dermatology has emerged as a proficient diagnostic approach for skin lesions and is particularly beneficial in rural areas with limited access to dermatologists. However, accurately, and efficiently segmenting melanoma remains a challenging task due to the significant diversity observed in the morphology, pigmentation, and dimensions of cutaneous nevi. To address this challenge, we propose a novel approach called DenseUNet-169 with a dilated convolution encoder-decoder for automatic segmentation of RGB dermascopic images. By incorporating dilated convolution, our model improves the receptive field of the kernels without increasing the number of parameters. Additionally, we used a method called Copy and Concatenation Attention Block (CCAB) for robust feature computation. To evaluate the performance of our proposed framework, we utilized the International Skin Imaging Collaboration (ISIC) 2017 dataset. The experimental results demonstrate the reliability and effectiveness of our suggested approach compared to existing methodologies. Our framework achieved a high level of accuracy (98.38%), precision (96.07%), recall (94.32%), dice score (95.07%), and Jaccard score (90.45%), outperforming current techniques.
This paper shows an approach for Electromyography (ECG) signal processing based on linear and nonlinear adaptive filtering using Recursive Least Square (RLS) algorithm to remove two kinds of noise that affected the ECG signal. These are the High Frequency Noise (HFN) and Low Frequency Noise (LFN). Simulation is performed in Matlab. The ECG, HFN and LFN signals used in this study were downloaded from ftp://ftp.ieee.org/uploads/press/rangayyan/, and then the filtering process was obtained by using adaptive finite impulse response (FIR) that illustrated better results than infinite impulse response (IIR) filters did.
This study investigated the treatment of dairy wastewater using the electrocoagulation method with iron filings as electrodes. The study dealt with real samples collected from local factory for dairy products in Baghdad. The Response Surface Methodology (RSM) was used to optimize five experimental variables at six levels for each variable, for estimating chemical oxygen demand (COD) removal efficiency. These variables were the distance between electrodes, detention time, dosage of NaCl as electrolyte, initial COD concentration, and current density. RSM was investigated the direct and complex interaction effects between parameters to estimate the optimum values. The respective optimum value was 1 cm for the distance between electrodes, (6
... Show MoreThe rotor dynamics generally deals with vibration of rotating structures. For designing rotors of a high speeds, basically its important to take into account the rotor dynamics characteristics. The modeling features for rotor and bearings support flexibility are described in this paper, by taking these characteristics of rotor dynamics features into standard Finite Element Approach (FEA) model. Transient and harmonic analysis procedures have been found by ANSYS, the idea has been presented to deal with critical speed calculation. This papers shows how elements BEAM188 and COMBI214 are used to represent the shaft and bearings, the dynamic stiffness and damping coefficients of journal bearings as a matrices have been found
... Show More<p>Generally, The sending process of secret information via the transmission channel or any carrier medium is not secured. For this reason, the techniques of information hiding are needed. Therefore, steganography must take place before transmission. To embed a secret message at optimal positions of the cover image under spatial domain, using the developed particle swarm optimization algorithm (Dev.-PSO) to do that purpose in this paper based on Least Significant Bits (LSB) using LSB substitution. The main aim of (Dev. -PSO) algorithm is determining an optimal paths to reach a required goals in the specified search space based on disposal of them, using (Dev.-PSO) algorithm produces the paths of a required goals with most effi
... Show MoreIts well known that understanding human facial expressions is a key component in understanding emotions and finds broad applications in the field of human-computer interaction (HCI), has been a long-standing issue. In this paper, we shed light on the utilisation of a deep convolutional neural network (DCNN) for facial emotion recognition from videos using the TensorFlow machine-learning library from Google. This work was applied to ten emotions from the Amsterdam Dynamic Facial Expression Set-Bath Intensity Variations (ADFES-BIV) dataset and tested using two datasets.
TThe property of 134−140Neodymium nuclei have been studied in framework Interacting Boson Model (IBM) and a new method called New Empirical Formula (NEF). The energy positive parity bands of 134−140Nd have been calculated using (IBM) and (NEF) while the negative parity bands of 134−140Nd have been calculated using (NEF) only. The E-GOS curve as a function of the spin (I) has been drawn to determine the property of the positive parity yrast band. The parameters of the best fit to the measured data are determined. The reduced transition probabilities of these nuclei was calculated. The critical point has been determined for 140Nd isotope. The potential energy surfaces (PESs) to the IBM Hamiltonian have been obtained using the intrin
... Show MoreCOVID 19 has spread rapidly around the world due to the lack of a suitable vaccine; therefore the early prediction of those infected with this virus is extremely important attempting to control it by quarantining the infected people and giving them possible medical attention to limit its spread. This work suggests a model for predicting the COVID 19 virus using feature selection techniques. The proposed model consists of three stages which include the preprocessing stage, the features selection stage, and the classification stage. This work uses a data set consists of 8571 records, with forty features for patients from different countries. Two feature selection techniques are used in
With the revolutionized expansion of the Internet, worldwide information increases the application of communication technology, and the rapid growth of significant data volume boosts the requirement to accomplish secure, robust, and confident techniques using various effective algorithms. Lots of algorithms and techniques are available for data security. This paper presents a cryptosystem that combines several Substitution Cipher Algorithms along with the Circular queue data structure. The two different substitution techniques are; Homophonic Substitution Cipher and Polyalphabetic Substitution Cipher in which they merged in a single circular queue with four different keys for each of them, which produces eight different outputs for
... Show More