Preferred Language
Articles
/
ShbpKosBVTCNdQwCSshd
Modeling and optimization of biodiesel from high free‐fatty‐acid chicken fat by non‐catalytic esterification and mussel‐shell‐catalyzed transesterification
...Show More Authors
Abstract<sec><title>BACKGROUND

In this study, biodiesel was prepared from chicken fat via a transesterification reaction using Mussel shells as a catalyst. Pretreatment of chicken fat was carried out using non‐catalytic esterification to reduce the free fatty acid content from 36.28 to 0.96 mg KOH/g oil using an ethanol/ fat mole ratio equal to 115:1. In the transesterification reaction, the studied variables were methanol: oil mole ratio in the range of (6:1 ‐ 30:1), catalyst loading in the range of (9‐15) wt%, reaction temperature (55‐75 °C), and reaction time (1‐7) h. The heterogeneous alkaline catalyst was greenly synthesized from waste mussel shells throughout a calcination process at different calcination times of (1‐5) h and temperatures of (700‐900) °C. The catalyst was characterized using BET, SEM, EDX, XRD, and FTIR.

RESULTS

In the transesterification reaction, the best values of the studied parameters were: 21:1 methanol: oil molar ratio, 12 wt% catalyst loading, 5 h reaction time, and 63°C reaction temperature, which gave 96.2% methyl esters content. For catalyst synthesis, it was found that the optimum calcination conditions were 900 °C and 3 h, which resulted in a specific surface area of 10.5 m2/g and a large pore volume of 0.0033 cm3/g.

CONCLUSION

A calcium oxide catalyst was successfully prepared from mussel shells. This catalyst was used to transesterify the chicken fat into biodiesel. The prepared catalyst exhibited a high active surface area and a pore volume, confirming that the CaO catalyst produced from waste mussel shells worked effectively, steadily, and affordably to produce renewable biodiesel. The best working conditions for the transesterification reaction were determined using the central Composite Design method (CCD). © 2023 Society of Chemical Industry.

Scopus Clarivate Crossref
View Publication
Publication Date
Fri Mar 01 2019
Journal Name
Iran. J. Chem. Chem. Eng.
Biochar from orange (Citrus sinensis) peels by acid activation for methylene blue adsorption
...Show More Authors

Preview PDF
Scopus (30)
Scopus
Publication Date
Sat Jan 01 2005
Journal Name
Al-khwarizmi Engineering Journal
Kinetic and Mechanism of Oxidation of Oxalic Acid by Cerium (IV)
...Show More Authors

Kinetic and mechanism studies of the oxidation of oxalic acid by Cerium sulphate have been carried out in acid medium sulphuric acid. The uv- vis. Spectrophotometric technique was used to follow up the reaction and the selected wavelength to be followed was 320 nm. The kinetic study showed that the order of reaction is first order in Ce(IV) and fractional in oxalic acid. The effect of using different concentration of sulphuric acid on the rate of the reaction has been studied a and it was found that the rate decreased with increasing the acid concentration. Classical organic tests was used to identify the product of the oxidation reaction, the product was just bubbles of CO2.

Publication Date
Wed Dec 27 2017
Journal Name
Al-khwarizmi Engineering Journal
Kinetic and Mechanism of Oxidation of Oxalic Acid by Cerium (IV)
...Show More Authors

Kinetic and mechanism studies of the oxidation of oxalic acid by Cerium sulphate have been carried out in acid medium sulphuric acid. The uv- vis. Spectrophotometric technique was used to follow up the reaction and the selected wavelength to be followed was 320 nm. The kinetic study showed that the order of reaction is first order in Ce(IV) and fractional in oxalic acid. The effect of using different concentration of sulphuric acid on the rate of the reaction has been studied a and it was found that the rate decreased with increasing the acid concentration. Classical organic tests was used to identify the product of the oxidation reaction, the product was just bubbles of CO2.

 

View Publication Preview PDF
Publication Date
Sun Sep 30 2001
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
The Effect of MFI of High-Density Polyethylene on the Mathematical Modeling of Tensile Characteristic
...Show More Authors

View Publication Preview PDF
Publication Date
Wed Dec 30 2009
Journal Name
Iraqi Journal Of Physics
Preparation and characterization of nanostructure high efficient CdS/Si hetrojunction by CBD
...Show More Authors

In this paper, CdS/Si hetrojunction solar cell has been made by
Chemical Bath Deposition (CBD) of CdS thin film on to
monocrystalline silicon substrate. XRD measurements approved that
CdS film is changing the structure of CdS films from mixed
hexagonal and cubic phase to the hexagonal phase with [101]
predominant orientation. I-V characterization of the hetrojunction
shows good rectification, with high spectral responsivity of 0.41
A/W, quantum efficiency 90%,and specific detectivity 2.9*1014
cmHz1/2W -1 .

View Publication Preview PDF
Publication Date
Fri Sep 30 2022
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Kinetic Study of Transesterification Reaction of Edible Oil Using Heterogenous Catalyst
...Show More Authors

AlPO4 solid acid catalyst was prepared in order to use it in transesterification reaction of edible oil after supporting it with tungsten oxide. The maximum conversion of edible oil was obtained 78.78% at catalyst concentration (5gm.), temperature 70°Ϲ, 30/1 methanol/edible oil molar ratio, and time 5hr. The study of kinetics of the transesterification reaction of edible oil indicates that the reaction has an order of 3/2, while the value of activation energy for  transesterification reaction is 51.367 kJ/mole and frequency factor equal 26219.13(L/ mol.minute).

Crossref (1)
Crossref
Publication Date
Fri Sep 30 2022
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Kinetic Study of Transesterification Reaction of Edible Oil Using Heterogenous Catalyst
...Show More Authors

   AlPO4 solid acid catalyst was prepared in order to use it in transesterification reaction of edible oil after supporting it with tungsten oxide. The maximum conversion of edible oil was obtained 78.78% at catalyst concentration (5gm.), temperature 70°Ϲ, 30/1 methanol/edible oil molar ratio, and time 5hr. The study of kinetics of the transesterification reaction of edible oil indicates that the reaction has an order of 3/2, while the value of activation energy for  transesterification reaction is 51.367 kJ/mole and frequency factor equal 26219.13(L/ mol.minute).

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Jan 19 2014
Journal Name
Romanian Biotechnological Letters
Optimization conditions for bioemulsifier production by local Streptomyces sp. SS20 isolated from hydrocarbon contaminated soil
...Show More Authors

Publication Date
Sat Feb 01 2020
Journal Name
Journal Of Global Pharma Technology,
Doppler study and cell free DNA biomarkers by using PCR in hypertensive and diabetic pregnant iraqi women
...Show More Authors

Scopus
Publication Date
Tue Jul 01 2025
Journal Name
South African Journal Of Chemical Engineering
Electrocoagulation process for cobalt removal from industrial wastewater: Optimization and kinetic study
...Show More Authors

View Publication
Scopus (2)
Scopus Clarivate Crossref