Natural fractures provide an important reservoir space and migration channels for oil and gas reservoirs and control the reservoir potential. Therefore, it is essential to understand the methods for identifying accurate reservoir permeability and characterizing reservoir fractures. In particular, using conventional measurements to identify permeability and characterize fractures is very expensive. While using conventional logging data is very challenging, and an efficient characterization correlation method is urgently needed. In this paper, we have evaluated reservoir potential based on the sensitivity of sonic scanner tools to fluid mobility, maximum stress direction, and fractures presence. This tool provides a continuous estimation of these important parameters along the studied formation using a real field data. Dispersion behavior based on the difference between the maximum and minimum energy of the studied formation is used to detect reservoir heterogeneity and anisotropy. Dispersion analysis shows the presence of inhomogeneous anisotropy in several intervals along the studied formation. The methodology used in this paper provides an accurate estimation of reservoir permeability varies from 1 to 100 md. Also, the application of this technique shows an accepted percent error of reservoir permeability estimation reaches to 7% when compared to laboratory core measurements. The average direction of the maximum horizontal stress in the studied formation is detected to be NW10 to N16E. The study results prove that the proposed technique is effective for the identification of important reservoir properties in the oil industry.
The Khabour reservoir, Ordovician, Lower Paleozoic, Akkas gas field which is considered one of the main sandstone reservoirs in the west of Iraq. Researchers face difficulties in recognizing sandstone reservoirs since they are virtually always tight and heterogeneous. This paper is associated with the geological modeling of a gas-bearing reservoir that containing condensate appears while production when bottom hole pressure declines below the dew point. By defining the lithology and evaluating the petrophysical parameters of this complicated reservoir, a geological model for the reservoir is being built by using CMG BUILDER software (GEM tool) to create a static model. The petrophysical properties of a reservoir were computed using
... Show MoreOver the past decades, several studies have examined the subcellular localization of the cauliflower mosaic virus (CaMV) P6 protein by tagging it with GFP (P6-GFP). These investigations have been essential in the development of models for inclusion body formation, nuclear transport, and microfilament-associated intracellular movement of P6 inclusion bodies for delivery of virions to plasmodesmata. Although it was shown early on that the translational transactivation function of P6-GFP was comparable to wild type P6, it has not been possible to incorporate a P6-GFP gene into an infectious clone of CaMV. Consequently, it has not been possible to formally prove that a P6-GFP fusion is comparable in function to the unmodified P6 protein. Here w
... Show MoreAbstract  
... Show MoreAn experimental study was performed to estimate the forced convection heat transfer performance and the pressure drop of a single layer graphene (GNPs) based DI-water nanofluid in a circular tube under a laminar flow and a uniform heat flux boundary conditions. The viscosity and thermal conductivity of nanofluid at weight concentrations of (0.1 to 1 wt%) were measured. The effects of the velocity of flow, heat flux and nanoparticle weight concentrations on the enhancement of the heat transfer are examined. The Nusselt number of the GNPs nanofluid was enhanced as the heat flux and the velocity of flow rate increased, and the maximum Nusselt number ratio (Nu nanofluid/ Nu base fluid) and thermal performance factor
... Show MoreIn this research, the electrical characteristics of glow discharge plasma were studied. Glow discharge plasma generated in a home-made DC magnetron sputtering system, and a DC-power supply of high voltage as input to the discharge electrodes were both utilized. The distance between two electrodes is 4cm. The gas used to produce plasma is argon gas which flows inside the chamber at a rate of 40 sccm. The influence of work function for different target materials (gold, copper, and silver), - 5cm in diameter and around 1mm thickness - different working pressures, and different applied voltages on electrical characteristics (discharge current, discharge potential, and Paschen’s curve) were studied. The results showed that the discharge cur
... Show MoreIn this work, enhancement to the fluorescence characteristics of laser dye solutions hosting highly-pure titanium dioxide nanoparticles as random gain media. This was achieved by coating two opposite sides of the cells containing these media with nanostructured thin films of highly-pure titanium dioxide. Two laser dyes; Rhodamine B and Coumarin 102, were used to prepare solutions in hexanol and methanol, respectively, as hosts for the nanoparticles. The nanoparticles and thin films were prepared by dc reactive magnetron sputtering technique. The enhancement was observed by the narrowing of fluorescence linewidth as well as by increasing the fluorescence intensity. These parameters were compared to those of the dye only and the dye solution
... Show MoreThe loose sand is subject to large settlement when it is exposed to high stresses. This settlement is due to the nature of the high drainage of sand, which displays foundations and constructions to a large danger. The densification of loose sandy soils is required to provide sufficient bearing capacity for the structures. Thus soil stabilization is used to avoid failure in the facilities. Traditional methods of stabilized sandy soil such as fly ash, bituminous, and cement often require an extended curing period. The use of polymers to stabilize sandy soils is more extensive nowadays because it does not require a long curing time in addition to being chemically stable. In this study, the effect of adding different percent
... Show MoreIn this study, gold nanoparticle samples were prepared by the chemical reduction method (seed-growth) with 4 ratios (10, 12, 15 and 18) ml of seed, and the growth was stationary at 40 ml. The optical and structural properties of these samples were studied. The 18 ml seed sample showed the highest absorbance. The X- ray diffraction (XRD) patterns of these samples showed clear peaks at (38.25o, 44.5o, 64.4o, and 77.95o). The UV-visible showed that the absorbance of all the samples was in the same range as the standard AuNPs. The field emission-scanning electron microscope (FE-SEM) showed the shape of AuNPs as nanorods and the particle size between 30-50 nm. Rhodamine-610 (RhB) was prepared at 10<
... Show More