The free electron laser is considered one of these important and advanced inventions because it provides a laser beam within various wavelengths of the electromagnetic spectrum. In any laser system device, several parameters must be available on which the efficiency and performance of the laser system are dependent. The Pierce parameter is one of the important parameters in measuring the performance quality of the free electron laser. In this paper, the simulation results were obtained using the MATLAB program to show the important effect of the Pierce parameter on the performance of the free electron laser system. The simulation results showed that the values of the Pierce parameter ranged between (0.01 - 0.03) for the laser beam with long wavelengths, while it ranged between (0.001-0.0001) for the short wavelengths. The results showed an increase in the efficiency values of the free electron laser system with increasing the values of the Pierce parameter, which represents the ratio between the saturation power and the power of the electron; therefore, it can be used as a specific threshold to measure the efficiency of the laser system. Additionally, the simulation of the Pierce parameter has a direct relation to the small signal gain per unit length.
Abstract:
The researcher shed light on a diet in Iraq before 2003 became in this period. And how the ration card has a variety of vocabulary and cover the need of the population of commodities and have a key role in saving Iraq from a real crisis in the period of economic siege, especially in light of the State's direction to support the agricultural sector, which in that period able to fill half of the market needs of food the basic. As well as providing strategic storage at the Ministry of Commerce enough for six months But after the events of 2003 and the crises that hit the country and the unstable security situation began to rise voices calling for reform of the ration card system as a system that is a burden on the
... Show MoreCuInSe2 (CIS)thin films have been prepared by use vacuum thermal evaporation technique, of 750 nm thickness, with rate of deposition 1.8±0.1 nm/sec on glass substrate at room temperature and pressure (10-5) mbar. Heat treatment has been carried out in the range (400-600) K for all samples. The optical properties of the CIS thin films are been studied such as (absorption coefficient, refractive index, extinction coefficient, real and imaginary dielectric constant)by determined using Measurement absorption and transmission spectra. Results showed that through the optical constants we can made to control it is wide applications as an optoelectronic devices and photovoltaic applications.
The aqueous extract of Citrullius colocynthis dried seeds (160 ?g/ml) was in vitro evaluated for its effect on phagocytic index (PI) and lymphocyte transformation index (LTI) of blood cells obtained from 30 apparently healthy blood donors (15 males and 15 females). The PI was further in vivo evaluated in cells of peritone, spleen and liver of mice treated with the extract at a dose of 0.64 mg/kg. The results revealed that in in vitro study, phagocytic cells treated with the extract showed a significant increased percentage as compared with untreated cells (60.0 vs. 44.1%). Phagocytes obtained from peritone (44.1 vs. 30.0%) and spleen (45.6 vs. 39.6 %) of treated and untreated mice behaved in a similar manner, while liver phagocytes showed n
... Show MoreChitosan (CH) / Poly (1-vinylpyrrolidone-co-vinyl acetate) (PVP-co-VAc) blend (1:1) and nanocomposites reinforced with CaCO3 nanoparticles were prepared by solution casting method. FTIR analysis, tensile strength, Elongation, Young modulus, Thermal conductivity, water absorption and Antibacterial properties were studied for blend and nanocomposites. The tensile results show that the tensile strength and Young’s modulus of the nanocomposites were enhanced compared with polymer blend [CH/(PVP-co-VAc)] film. The mechanical properties of the polymer blend were improved by the addition of CaCO3 with significant increases in Young’s modulus (from 1787 MPa to ~7238 MPa) and tensile strength (from 47.87 MPa to 79.75 MPa). Strong interfacial
... Show More