To evaluate the bioactivity and the cytocompatibility of experimental Bioglass-reinforced polyethylene-based root-canal filling materials. The thermal properties of the experimental materials were also evaluated using differential scanning calorimetry, while their radiopacity was assessed using a grey-scale value (GSV) aluminium step wedge and a phosphor plate digital system. Bioglass 45S5 (BAG), polyethylene and Strontium oxide (SrO) were used to create tailored composite fibres. The filler distribution within the composites was assessed using SEM, while their bioactivity was evaluated through infrared spectroscopy (FTIR) after storage in simulated body fluid (SBF). The radiopacity of the composite fibres and their thermal properties were determined using differential scanning calorimetry (DSC). The cytocompatibility of the experimental composites used in this study was assessed using human osteoblasts and statistically analysed using the Pairwise t-test (p<0.05). Bioglass and SrO fillers were well distributed within the resin matrix and increased both the thermal properties and the radiopacity of the polyethylene matrix. The FTIR showed a clear formation of calcium-phosphates, while, MTT and AlamrBlue tests demonstrated no deleterious effects on the metabolic activity of the osteoblast-like cells. BAG-reinforced polyethylene composites may be suitable as obturation materials for endodontic treatment. Since their low melting temperature, such innovative composites may be easily removed in case of root canal retreatment. Moreover, their biocompatibility and bioactivity may benefit proliferation of human osteoblast cells at the periapical area of the root.
To evaluate and improve the efficiency of photovoltaic solar modules connected with linear pipes for water supply, a three-dimensional numerical simulation is created and simulated via commercial software (Ansys-Fluent). The optimization utilizes the principles of the 1st and 2nd laws of thermodynamics by employing the Response Surface Method (RSM). Various design parameters, including the coolant inlet velocity, tube diameter, panel dimensions, and solar radiation intensity, are systematically varied to investigate their impacts on energetic and exergitic efficiencies and destroyed exergy. The relationship between the design parameters and the system responses is validated through the development of a predictive model. Both single and mult
... Show MoreA study carried out on ceramic material made at (a-Al2O3) doped with MgO (0.5 , 0.3 , 0.2,0.1)%,with particle size at 63mm.
A Hydraulic press of 5kn at diameter of 2cm.A nnalelling at 1500Co and 6 hrs still to see the effect on the changes of the dielectric material. With frequency range at (1K – 1M) Hz. And the result show that at percentage of 0.5% of MgO, the real dielectric material decreased with the increased frequency
In this study, multi-objective optimization of nanofluid aluminum oxide in a mixture of water and ethylene glycol (40:60) is studied. In order to reduce viscosity and increase thermal conductivity of nanofluids, NSGA-II algorithm is used to alter the temperature and volume fraction of nanoparticles. Neural network modeling of experimental data is used to obtain the values of viscosity and thermal conductivity on temperature and volume fraction of nanoparticles. In order to evaluate the optimization objective functions, neural network optimization is connected to NSGA-II algorithm and at any time assessment of the fitness function, the neural network model is called. Finally, Pareto Front and the corresponding optimum points are provided and
... Show MoreCadmium sulfide (CdS) thin films with n-type semiconductor characteristics were prepared by flash evaporating method on glass substrates. Some films were annealed at 250 oC for 1hr in air. The thicknesses of the films was estimated to be 0.5µ by the spectrometer measurement. Structural, morphological, electrical, optical and photoconductivity properties of CdS films have been investigated by X-ray diffraction, AFM, the Hall effect, optical transmittance spectra and photoconductivity analysis, respectively. X-ray diffraction (XRD) pattern shows that CdS films are in the stable hexagonal crystalline structure. Using Debye Scherrerś formula, the average grain size for the samples was found to be 26 nm. The transmittance of the
... Show MorePolyvinal alcohol was Cynoethylated , complex compound with Iodin in presence of Cu++ ions were preparated and their ultra violet (U.V) and infra red( IR) spectra were investigated. The prepared derivative and complexes were evaluated as antibacterial and antifungal agents following the standard dilution method. MIC(minimum inhibitory concentration) for each polymer using ten types of gram + ve and gram _ ve bacteria were determinated in addition to three types of fungi. The results obtainded showed that MIC, s were around 0.0011 × 103 molar for different polymetric derivatives tried.
This research is devoted to investigating the thermal buckling analysis behaviour of laminated composite plates subjected to uniform and non-uniform temperature fields by applying an analytical model based on a refined plate theory (RPT) with five unknown independent variables. The theory accounts for the parabolic distribution of the transverse shear strains through the plate thickness and satisfies the zero-traction boundary condition on the surface without using shear correction factors; hence a shear correction factor is not required. The governing differential equations and associated boundary conditions are derived by using the virtual work principle and solved via Navier-type analytical procedure to obtain critica
... Show MoreBackground: The treatment of schizophrenia typically involves the use of olanzapine (OLZ), a typical antipsychotic drug that has poor oral bioavailability due to its low solubility and first-pass effect. Objective: To prepare and optimize OLZ as nanoparticles for transdermal delivery to avoid problems with oral administration. Methods: The nanoprecipitation technique was applied for the preparation of eight OLZ nanoparticles by using different polymers with various ratios. Nanoparticles were evaluated using different methods, including particle size, polydispersity index (PDI), entrapment efficiency (EE%), zeta potential and an in vitro release study. The morphology was evaluated by a field emission scanning electron microscope (F
... Show MoreThe aim of present study was to develop gel formulation of microsponges of poorly soluble drug meloxicam (MLX) in order to enhance the release and dissolution of MLX which is the limitation for preparation in topical forms. Also skin delivery is an alternative administration for MLX that can minimize gastrointestinal (GI) side effects and improve patient compliance. The microsponges of MLX were prepared by quasi-emulsion solvent diffusion method. The effects of drug:polymer ratio, stirring time and Eudragit polymer type on the physical characteristics of microsponges were investigated and characterized for production yield, loading efficiency, particle size, surface morphology, and in vitro drug release from microsponges. The selec
... Show MoreThis research aimed at recognizing the properties of curricula that fitted to preeminent and talent students. Many types of these curricula were exposed, enrichment curriculum was explained as one of alternatives of available curricula.
The research used the analytical methodology for local and international literature in the field of preeminent and talent education to meet the properties of curricula that fitted to this special group of students. Many results was obtained as:
• This type of school enrichment curriculum consists of three levels( general discovery activities, individual and groups training activities, and individual or groups real problems).
• Investigation the effectively both sides of brain: right and left,