In This paper, CuO thin films having different thickness (250, 300 , 350 and 400) nm were deposited on glass substrates by thermal vacuum evaporator. The thermal oxidation of this evaporated film was done in heated glass at temperature (300 in air at one hour. The study of X-ray diffraction investigated all the exhibit polycrystalline nature with monoclinic crystal structure include uniformly grains. Thin film’s internal structure topographical and optical properties. Furthermore, the crystallization directions of CuO (35.54 , 38.70 ) can be clearly observed through an X-ray diffraction analysis XRD, Atomic Force Microscope AFM (topographic image) showed that the surface Characteristics , thin films crystals grew with increases in either the different thickness, also , the grain size increased in rang (14.65-19.39) nm. The optical properties concerning the absorption and transmission spectra were studies for prepared thin films. UV-Vis measurement spectra showed that ultraviolet (UV) transmittance intensity decreased with increases thickness, the energy band gap decreased from (1.62 to1.48) eV when the thickness varying from 250 to 400 nm
The purpose of this paper is to present an approach to compute accurately the distributions of the frictional heat generated, contact pressure and thermal stresses at any instant during the sliding period (heating phase) of the single-disc friction clutch system works in the dry condition and the complex interaction among them.
Numerical work was achieved using the developed elastic and thermal finite element models (axisymmetric models) to simulate the engagement of the single-disc friction clutch system.
The alfalfa plant, after harvesting, was washed, dried, and grinded to get fine powder used in water treatment. We used the alfalfa plant with ethanol to make the alcoholic extract characterized by using (GC-Mass, FTIR, and UV) spectroscopy to determine active compounds. Alcoholic extract was used to prepare zinc nanoparticles. We characterized Zinc nanoparticles using (FTIR, UV, SEM, EDX Zeta potential, XRD, AFM). Zinc nanoparticle with Alfalfa extract and alfalfa powder were used in the treatment of water polluted with inorganic elements such as Cr, Mn, Fe, Cu, Cd, Ag by (Batch processing). The batch process with using alfalfa powder gets treated with Pb (51.45%), which is the highest percentage of treatment. Mn (13.18%), which is the
... Show MoreBackground: This study compared in vitro the marginal adaptation of three different, low shrink, direct posterior composites Filtekâ„¢ P60 (packable composite), Filtekâ„¢ P90 (Silorane-based composite) and Sonic fillâ„¢ (nanohybrid composite) at three different composite/enamel interface regions (occlusal, proximal and gingival regions) of a standardized Class II MO cavity after thermal changes and mechanical load cycling by scanning electron microscopy. Materials and methods:Thirty six sound human maxillary first premolars of approximately comparable sizes were divided into three main groups of (12 teeth) in each according to the type of restorative material that was used: group (A) the teeth were restored with Filtekâ„¢ P6
... Show MoreThe one-dimensional, spherical coordinate, non-linear partial differential equation of transient heat conduction through a hollow spherical thermal insulation material of a thermal conductivity temperature dependent property proposed by an available empirical function is solved analytically using Kirchhoff’s transformation. It is assumed that this insulating material is initially at a uniform temperature. Then, it is suddenly subjected at its inner radius with a step change in temperature. Four thermal insulation materials were selected. An identical analytical solution was achieved when comparing the results of temperature distribution with available analytical solution for the same four case studies that assume a constant thermal con
... Show MoreThe one-dimensional, cylindrical coordinate, non-linear partial differential equation of transient heat conduction through a hollow cylindrical thermal insulation material of a thermal conductivity temperature dependent property proposed by an available empirical
function is solved analytically using Kirchhoff’s transformation. It is assumed that this insulating material is initially at a uniform temperature. Then, it is suddenly subjected at its inner radius with a step change in temperature. Four thermal insulation materials were selected. An identical analytical solution was achieved when comparing the results of temperature distribution with available analytical solution for the same four case studies that assume a constant the
In this study, hydroxyapatite (HAP, Ca10(PO4)6(OH)2) has been prepared as bioceramic material with biological specifications useful to used for orthopedic and dental implant applications. Wet chemical processing seems to form the fine grain size and uniform characteristic nanocrystalline materials by the interstice factors controlling which affected the grain size and crystallinity in order to give good mechanical and/or constituent properties similar as natural bone. Fluorinated hydroxyapatite [4-6 wt% F, (FHA, Ca10(PO4)6(OH)2–Fx] was developed in new method for its posses to increased strength and to give higher corrosion resistance in biofluids than pure HAP moreover reduces the risk of dental caries. The phase's and functional groups
... Show MoreRecently, important efforts have been made in an attempt to search for the cheapest and ecofriendly alternatives adsorbents. In the present work, waste molasses from Iraqi date palm (Zahdi) had been used as a provenance to produce charcoal for the removal of methylene blue (MB) dye from water. The optimum prepared charcoal was obtained at 150 C, by increasing temperature to 175 C, the charcoal had almost converted to ash. The obtained charcoal have been inspected for properties using scanning electron microscope (SEM), atomic force microscope (AFM), porosity and surface area. Adsorption data were optimized to Langmuir and Freundlich and adsorption parameters have been evaluated. The thermodynamic parameters like a change
... Show MorePure Polyaniline salt, and protonation PANI by H2SO4 were synthesized by electro-chemical oxidative polymerization of aniline with acidity of H2SO4. The solution was prepared in reaction temperature equal 291 K and the acidity of aqueous solution was 1 molarities. The prepared polyaniline was characterized by FT-IR, the result indicate that the intensity is increase with increasing of applied voltage. The dc conductivity has been measured for bulk polyaniline pure and doped in the form of compressed pellet with evaporated Ohmic Al electrodes in temperature range (303-423) K. The Eav energy of the thermal rate process of the electrical conductivity was determined. The results indicate that the dc conductivity of doped samples are two or t
... Show More
