The rapid and enormous growth of the Internet of Things, as well as its widespread adoption, has resulted in the production of massive quantities of data that must be processed and sent to the cloud, but the delay in processing the data and the time it takes to send it to the cloud has resulted in the emergence of fog, a new generation of cloud in which the fog serves as an extension of cloud services at the edge of the network, reducing latency and traffic. The distribution of computational resources to minimize makespan and running costs is one of the disadvantages of fog computing. This paper provides a new approach for improving the task scheduling problem in a Cloud-Fog environme
In aspect-based sentiment analysis ABSA, implicit aspects extraction is a fine-grained task aim for extracting the hidden aspect in the in-context meaning of the online reviews. Previous methods have shown that handcrafted rules interpolated in neural network architecture are a promising method for this task. In this work, we reduced the needs for the crafted rules that wastefully must be articulated for the new training domains or text data, instead proposing a new architecture relied on the multi-label neural learning. The key idea is to attain the semantic regularities of the explicit and implicit aspects using vectors of word embeddings and interpolate that as a front layer in the Bidirectional Long Short-Term Memory Bi-LSTM. First, we
... Show MoreWildfire risk has globally increased during the past few years due to several factors. An efficient and fast response to wildfires is extremely important to reduce the damaging effect on humans and wildlife. This work introduces a methodology for designing an efficient machine learning system to detect wildfires using satellite imagery. A convolutional neural network (CNN) model is optimized to reduce the required computational resources. Due to the limitations of images containing fire and seasonal variations, an image augmentation process is used to develop adequate training samples for the change in the forest’s visual features and the seasonal wind direction at the study area during the fire season. The selected CNN model (Mob
... Show MoreThe rise of Industry 4.0 and smart manufacturing has highlighted the importance of utilizing intelligent manufacturing techniques, tools, and methods, including predictive maintenance. This feature allows for the early identification of potential issues with machinery, preventing them from reaching critical stages. This paper proposes an intelligent predictive maintenance system for industrial equipment monitoring. The system integrates Industrial IoT, MQTT messaging and machine learning algorithms. Vibration, current and temperature sensors collect real-time data from electrical motors which is analyzed using five ML models to detect anomalies and predict failures, enabling proactive maintenance. The MQTT protocol is used for efficient com
... Show MoreRecently emerging pandemic SARS CoV-2 conquered our world since December 2019. Continuous efforts have been done to find out effective immunization and precise treatment stetratigies A way from therapeutic options that were tried in SARS CoV-2, an increased attention is directed to predict natural products and mainly phytochemicals as collaborative measures for this crisis. In this review, most of the mentioned compounds specially flavonoids (biacalin, hesperidin, quercetin, luteolin,, and phenolic (resveratrol, curcumin, and theaflavin) exert their effect through interfering with the action of one or more of this proteins (spike protein, papain like protease, 3 chymotrypsin like cysteine protease, and RNA dependent RNA
... Show MoreAbstract
Electrical magnate was designed and constructed, the optimum Magnetic flux and the effect of time on the physical properties of the alkaline (magnetic water) produced from the bottled drinking water [the total dissolved solids (TDS) or the electrical conductivity, and pH] were studied, to simulate ZamZam water in Mekka Saudi Arabia. Also, the efficiency of magnetic field from this designed electrical magnate in decreasing the TDS of sea water (of 1500 ppm NaCl Content), to convert it to water suitable for irrigation (TDS<1000 ppm) was investigated in this work.The results show that the magnetic flux from our designed electrical magnate in the range of (0.013- 0.08) Tesla and 30 minut
... Show MoreThe objective of this paper was to study the laser spot welding process of low carbon steel sheet. The investigations were based on analytical and finite element analyses. The analytical analysis was focused on a consistent set of equations representing interaction of the laser beam with materials. The numerical analysis based on 3-D finite element analysis of heat flow during laser spot welding taken into account the temperature dependence of the physical properties and latent heat of transformations using ANSYS code V.10.0 to simulate the laser welding process. The effect of laser operating parameters on the results of the temperature profile were studied in addition to the effect on thermal stresses and dimensions of the laser w
... Show MoreThis study aimed to investigate the influence of longitudinal steel embedded tubes located at the center of the column cross-section on the behavior of reinforced concrete (RC) columns. The experimental program consisted of 8 testing pin-ended square sectional columns of 150×150 mm, having a total height of 1400 mm, subjected to eccentric load. The considered variables were the steel square tube sizes of 25, 51 and 68 mm side dimensions and the load eccentricity (50 and 150) mm. RC columns were concealed steel tubes with hollow ratios of 3%, 12% and 20% depending on tube sizes used. The experimental results indicated an improvement in the overall behavior of eccentric columns when steel embedded tubes are used. The maximum gain in
... Show More