This study's objective is to assess how well UV spectrophotometry can be used in conjunction with multivariate calibration based on partial least squares (PLS) regression for concurrent quantitative analysis of antibacterial mixture (Levofloxacin (LIV), Metronidazole (MET), Rifampicin (RIF) and Sulfamethoxazole (SUL)) in their artificial mixtures and pharmaceutical formulations. The experimental calibration and validation matrixes were created using 42 and 39 samples, respectively. The concentration range taken into account was 0-17 μg/mL for all components. The calibration standards' absorbance measurements were made between 210 and 350 nm, with intervals of 0.2 nm. The associated parameters were examined in order to develop the optimal calibration model. The cross-validation method was used to determine the ideal number of components. The coefficient of determination (R2) and the root mean square error of calibration (RMSEC) are used to evaluate the calibration model. The relation between the LEV, MET, RIF, and SUL actual values and predicted values had a coefficient of determination that was higher than 0.997, showing very good accuracy of the devised approach. The obtained RMSEC values, 0.181056465 (LEV), 0.180375418 (MET), 0.142767171 (RIF), and 0.17157454 (SUL), show an analytical procedure with adequate precision. The suggested technique for quantitative analysis of the quaternary mixture of LEV, MET, RIF, and SUL have been applied successfully in different pharmaceutical preparations. The UV spectrophotometry assisted with chemometric-PLS without prior treatment, be utilised to resolve multicomponent mixtures successfully.
Abstract
The logistic regression model is one of the nonlinear models that aims at obtaining highly efficient capabilities, It also the researcher an idea of the effect of the explanatory variable on the binary response variable. &nb
... Show MoreThe logistic regression model is an important statistical model showing the relationship between the binary variable and the explanatory variables. The large number of explanations that are usually used to illustrate the response led to the emergence of the problem of linear multiplicity between the explanatory variables that make estimating the parameters of the model not accurate.
... Show MoreThere is an evidence that channel estimation in communication systems plays a crucial issue in recovering the transmitted data. In recent years, there has been an increasing interest to solve problems due to channel estimation and equalization especially when the channel impulse response is fast time varying Rician fading distribution that means channel impulse response change rapidly. Therefore, there must be an optimal channel estimation and equalization to recover transmitted data. However. this paper attempt to compare epsilon normalized least mean square (ε-NLMS) and recursive least squares (RLS) algorithms by computing their performance ability to track multiple fast time varying Rician fading channel with different values of Doppler
... Show MoreA Modified version of the Generlized standard addition method ( GSAM) was developed. This modified version was used for the quantitative determination of arginine (Arg) and glycine ( Gly) in arginine acetyl salicylate – glycine complex . According to this method two linear equations were solved to obtain the amounts of (Arg) and (Gly). The first equation was obtained by spectrophotometic measurement of the total absorbance of (Arg) and (Gly) colored complex with ninhydrin . The second equation was obtained by measuring the total acid consumed by total amino groups of (Arg) and ( Gly). The titration was carried out in non- aqueous media using perchloric acid in glacial acetic acid as a titrant. The developed metho
... Show MoreAbstract
The research aimed to test the relationship between the size of investment allocations in the agricultural sector in Iraq and their determinants using the Ordinary Least Squares (OLS) method compared to the Error Correction Model (ECM) approach. The time series data for the period from 1990 to 2021 was utilized. The analysis showed that the estimates obtained using the ECM were more accurate and significant than those obtained using the OLS method. Johansen's test indicated the presence of a long-term equilibrium relationship between the size of investment allocations and their determinants. The results of th
... Show MoreResearchers need to understand the differences between parametric and nonparametric regression models and how they work with available information about the relationship between response and explanatory variables and the distribution of random errors. This paper proposes a new nonparametric regression function for the kernel and employs it with the Nadaraya-Watson kernel estimator method and the Gaussian kernel function. The proposed kernel function (AMS) is then compared to the Gaussian kernel and the traditional parametric method, the ordinary least squares method (OLS). The objective of this study is to examine the effectiveness of nonparametric regression and identify the best-performing model when employing the Nadaraya-Watson
... Show MoreIn this paper, the Monte-Carlo simulation method was used to compare the robust circular S estimator with the circular Least squares method in the case of no outlier data and in the case of the presence of an outlier in the data through two trends, the first is contaminant with high inflection points that represents contaminant in the circular independent variable, and the second the contaminant in the vertical variable that represents the circular dependent variable using three comparison criteria, the median standard error (Median SE), the median of the mean squares of error (Median MSE), and the median of the mean cosines of the circular residuals (Median A(k)). It was concluded that the method of least squares is better than the
... Show MoreAbstract
The analysis of Least Squares: LS is often unsuccessful in the case of outliers in the studied phenomena. OLS will lose their properties and then lose the property of Beast Linear Unbiased Estimator (BLUE), because of the Outliers have a bad effect on the phenomenon. To address this problem, new statistical methods have been developed so that they are not easily affected by outliers. These methods are characterized by robustness or (resistance). The Least Trimmed Squares: LTS method was therefore a good alternative to achieving more feasible results and optimization. However, it is possible to assume weights that take into consideration the location of the outliers in the data and det
... Show MoreIn this study, we investigate about the estimation improvement for Autoregressive model of the third order, by using Levinson-Durbin Recurrence (LDR) and Weighted Least Squares Error ( WLSE ).By generating time series from AR(3) model when the error term for AR(3) is normally and Non normally distributed and when the error term has ARCH(q) model with order q=1,2.We used different samples sizes and the results are obtained by using simulation. In general, we concluded that the estimation improvement for Autoregressive model for both estimation methods (LDR&WLSE), would be by increasing sample size, for all distributions which are considered for the error term , except the lognormal distribution. Also we see that the estimation improve
... Show MoreThis study aims to improve the quality of satellites signals in addition to increase accuracy level delivered from handheld GPS data by building up a program to read and decode data of handheld GPS. Where, the NMEA protocol file, which stands for the National Marine Electronics Association, was generated from handheld GPS receivers in real time using in-house design program. The NMEA protocol file provides ability to choose points positions with best status level of satellites such as number of visible satellite, satellite geometry, and GPS mode, which are defined as accuracy factors. In addition to fix signal quality, least squares technique was adopted in this study to minimize the residuals of GPS observations and enh
... Show More