A field experiment was conducted in Yusufiya sub-district - Mahmudiya township/Baghdad governorate in silty loam texture soil during the spring season of 2020. The experiment included three treatments with three replicates, as the Randomized Complete Block Design (RCBD) was used according to the arrangement of the split design block. The treatments are in the irrigation system, which included surface drip irrigation (T1) and sprinkler irrigation (T2). Secondly, the Irrigation levels including the irrigation using 0.70 Pan Evaporation Fraction PEF (I1), irrigation using 1.00 PEF (I2), and irrigation using 1.30 PEF (I3). Coupled with, Pota
... Show MoreRooting response in stem cuttings of mung bean increased considerably with inresing
seedling age, due to endogenous IAA or supplied IBA. However, after the day 7- or 8-old of
seedling age. The cotyledons sheivel and drop-off spontaneously at day-8 of seedling age. So
that cotyledons excision after cuttings were made during the period between seedling
emergence (the day 4) and cotyledons dropping off (which starts at day 8 and its completion
at day 10) causes decrease in rooting at any time during cutting treatment ,in particular, at
zero time . In addition, results of this study revealed that terminal buds do not influence
significantly adventitious root formation whether IBA supplied or not. Whereas in leafless
c
Thin films Tin sulfide SnS pure and doped with different ratios of Cu (X=0, 0.01, 0.03 and 0.05) were prepared using thermal evaporation with a vacuum of 4*10-6mbar on two types of substrates n-type Si and glass with (500) nm thickness for solar cell application. X-ray diffraction and AFM analysis were carried out to explain the influence of Cu ratio dopant on structural and morphological properties respectively. SnS phase appeared forming orthorhombic structure with preferred orientation (111), increase the crystallinity degree and surface roughness with increase Cu ratio. UV/Visible measurement revealed the decrease in energy gap from 1.9eV for pure SnS to 1.5 for SnS: Cu (0.05) making these samples suitable f
... Show MoreA laboratory experiment has been carried out in the College of Science-University of Salahaddin to study the effect of different levels (0,5,10 and 15%) and sizes(250 and 1000µm) of walnut seeds residues and (160mg.kg-1) phosphorus fertilization on the concentration of phosphorus availability and alkaline phosphatase activity in calcareous soil during 15 and 30 days period of incubation, the experimental design in factorial complet randomize design (C.R.D) with three replications. The results indicated that the application of different levels of walnut seed residues decreases the concentration of phosphorus availability and alkaline phosphatase activity, however the results revealed that combination between levels and sizes o
... Show MoreIn this research thin films from SnO2 semiconductor have been prepared by using chemical pyrolysis spray method from solution SnCl2.2H2O at 0.125M concentration on glass at substrate temperature (723K ).Annealing was preformed for prepared thin film at (823K) temperature. The structural and sensing properties of SnO2 thin films for CO2 gas was studied before and after annealing ,as well as we studied the effect temperature annealing on grain size for prepared thin films .
The present work describes the adsorption of Ba2+ and Mg2+ions from aqueous solutions by activated alumina in single and binary system using batch adsorption. The effect of different parameters such as amount of alumina, concentration of metal ions, pH of solution, contact time and agitation speed on the adsorption process was studied. The optimum adsorbent dosage was found to be 0.5 g and 1.5 g for removal of Ba2+ and Mg2+, respectively. The optimum pH, contact time and agitation speed, were found to be pH 6, 2h and 300 rpm, respectively, for removal of both metal ions. The equilibrium data were analyzed by Langmuir and Freundlich isotherm models and the data fitted well to both isotherm modes as indicated by higher correlation of deter
... Show More