Preferred Language
Articles
/
SYYzo4YBIXToZYALQpt5
Removal of copper ions from contaminated groundwater using waste foundry sand as permeable reactive barrier
...Show More Authors

Scopus Clarivate Crossref
Publication Date
Thu Nov 02 2023
Journal Name
Journal Of Engineering
Constructing a Sustainable Roller Compacted Concrete Using Waste Demolished Material as Replacement of Cement: A Review
...Show More Authors

Roller Compacted Concrete is a type of concrete that is environmentally friendly and more economical than traditional concrete. Roller Compacted Concrete is typically used for heavy-duty and specialist constructions, such as hydraulic structures and pavements, because of its coarse surface. The main difference between RCC and conventional concrete mixtures is that RCC has a more significant proportion of fine aggregates that allow compaction and tight packing. In recent years, it has been estimated that several million tons of waste demolished material (WDM) produced each year are directed to landfills worldwide without being recycled for disposal. This review aimed to study the literature about creating a Roller-Comp

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Oct 01 2015
Journal Name
Journal Of Engineering
Studying the Utility of Using Reed and Sawdust as Waste Materials to Produce Cementitious Building Units
...Show More Authors

In this research, the possibility of using waste wooden materials (reed and sawdust) was studied to produce sustainable and thermal insulation lightweight building units , which has economic and environmental advantages. This study is intended to produce light weight building units with low thermal conductivity, so it can be used as partitions to improve the thermal insulation in buildings. Waste wooden materials were used as a partial replacement of natural sand, in different percentages (10, 20, 30, and 40) % . The mix proportions were (1:2.5) (cement: fine aggregate) with w/c of 0.4. The values of 28 days oven dry density ranged between (2060-1693) kg/m3.The thermal conductivity decreased from (0.745 to 0.2

... Show More
View Publication Preview PDF
Publication Date
Tue Jan 31 2017
Journal Name
Journal Of Engineering
Studying the Adsorption of Lead from aqueous Solution using Local Adsorbent Material Produced from Waste Tires by Pyrolysis
...Show More Authors

In this research a local adsorbent was prepared from waste tires using two-step pyrolysis method. In the carbonization process, nitrogen gas flow rate was 0.2L/min at carbonization temperature of 500ºC for 1h. The char products were then preceded to the activation process at 850°C under carbon dioxide (CO2) activation flow rate of 0.6L/min for 3h. The activation method produced local adsorbent material with a surface area and total pore volume as high as 118.59m2 /g and 0.1467cm3/g, respectively. The produced . local adsorbent (activated carbon) was used for adsorption of lead from aqueous solution. The continuous fixed bed column experiments were conducted. The adsorption capacity performance of prepared activated carbons in this work

... Show More
View Publication Preview PDF
Publication Date
Wed Sep 01 2021
Journal Name
Journal Of Ecological Engineering
Heavy Metals Removal from Simulated Wastewater using Horizontal Subsurface Constructed Wetland
...Show More Authors

This study aimed to assess the efficiency of Nerium oleander in removing three different metals (Cd, Cu, and Ni) from simulated wastewater using horizontal subsurface flow constructed wetland (HSSF-CW) system. The HSSF-CW pilot scale was operated at two hydraulic retention times (HRTs) of 4 and 7 days, filled with a substrate layer of sand and gravel. The results indicated that the HSSF-CW had high removal efficiency of Cd and Cu. A higher HRT (7 days) resulted in greater removal efficiency reaching up to (99.3% Cd, 99.5% Cu, 86.3% Ni) compared to 4 days. The substrate played a significant role in removal of metals due to adsorption and precipitation. The N. oleander plant also showed a good tolerance to the uptake of Cd, Cu, and Ni ions fr

... Show More
Scopus (18)
Crossref (17)
Scopus Clarivate Crossref
Publication Date
Mon Aug 01 2011
Journal Name
Journal Of Engineering
DYE REMOVAL FROM TEXTILE WASTEWATER BY COAGULATION USING ALUM AND PAC
...Show More Authors

Removal of solar brown and direct black dyes by coagulation with two aluminum based
coagulants was conducted. The main objective is to examine the efficiency of these
coagulants in the treatment of dye polluted water discharged from Al-Kadhymia Textile
Company (Baghdad-Iraq). The performance of these coagulants was investigated through
jar test by comparing dye percent removal at different wastewater pH, coagulant dose,
and initial dye concentration. Results show that alum works better than PAC under acidic
media (5-6) and PAC works better under basic media (7-8) in the removal of both solar
brown and direct black dyes. Higher doses of PAC were required to achieve the
maximum removal efficiency under optimum pH co

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Sep 01 2021
Journal Name
Journal Of Ecological Engineering
Heavy Metals Removal from Simulated Wastewater using Horizontal Subsurface Constructed Wetland
...Show More Authors

This study aimed to assess the efficiency of Nerium oleander in removing three different metals (Cd, Cu, and Ni) from simulated wastewater using horizontal subsurface flow constructed wetland (HSSF-CW) system. The HSSF-CW pilot scale was operated at two hydraulic retention times (HRTs) of 4 and 7 days, filled with a substrate layer of sand and gravel. The results indicated that the HSSF-CW had high removal efficiency of Cd and Cu. A higher HRT (7 days) resulted in greater removal efficiency reaching up to (99.3% Cd, 99.5% Cu, 86.3% Ni) compared to 4 days. The substrate played a significant role in removal of metals due to adsorption and precipitation. The N. oleander plant also showed a good tolerance to the uptake of Cd, Cu, and Ni ions fr

... Show More
Crossref (17)
Crossref
Publication Date
Wed Jul 01 2015
Journal Name
Advanced Powder Technology
Characterization of nano-silica prepared from local silica sand and its application in cement mortar using optimization technique
...Show More Authors

View Publication
Scopus (85)
Crossref (84)
Scopus Clarivate Crossref
Publication Date
Fri Feb 28 2020
Journal Name
Iraqi Journal Of Agricultural Sciences (ijas)
PHYTOTOXICITY TEST OF KEROSENE-CONTAMINATED SOIL USING BARLEY
...Show More Authors

This study was aimed to determine a phytotoxicity experiment with kerosene as a model of a total petroleum hydrocarbon (TPHs) as Kerosene pollutant at different concentrations (1% and 6%) with aeration rate (0 and 1 L/min) and retention time (7, 14, 21, 28 and 42 days), was carried out in a subsurface flow system (SSF) on the Barley wetland. It was noted that greatest elimination 95.7% recorded at 1% kerosene levels and aeration rate 1L / min after a period of 42 days of exposure; whereas it was 47% in the control test without plants. Furthermore, the percent of elimination efficiencies of hydrocarbons from the soil was ranged between 34.155%-95.7% for all TPHs (Kerosene) concentrations at aeration rate (0 and 1 L/min). The Barley c

... Show More
Crossref
Publication Date
Mon Apr 01 2024
Journal Name
South African Journal Of Chemical Engineering
Removal of COD from petroleum refinery wastewater by adsorption using activated carbon derived from avocado plant
...Show More Authors

View Publication
Scopus (13)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Wed May 24 2017
Journal Name
International Journal Of Science And Research (ijsr)
Some Properties of Mortar and Concrete Using Brick, Glass and Tile Waste as Partial Replacement of Cement
...Show More Authors

The using of waste products as a recycled material was one of the most important studies for saving money and reduces the pollution. Mortar and concrete mixes with (10, 20 and 30)% of brick, glass and tile powder as replacement by weight of cement was investigated. The concrete mixes using brick or glass as 10%replacement of cement exhibited enhancement in compressive strength about (6, 4.7 and 2.0)% and (7.2, 5.6 and 2)% at age 7, 28 and 90 days respectively compared to reference mix. The 20% replacement of glass powder also showed an increase in the compressive strength up to (8, 6.3 and 4) %at age 7,28 and 90 days respectively compared to reference mix. Finally concrete mix using (10, 20 and 30) % tile powder as replacement of cement sho

... Show More