Projects suspensions are between the most insistent tasks confronted by the construction field accredited to the sector’s difficulty and its essential delay risk foundations’ interdependence. Machine learning provides a perfect group of techniques, which can attack those complex systems. The study aimed to recognize and progress a wellorganized predictive data tool to examine and learn from delay sources depend on preceding data of construction projects by using decision trees and naïve Bayesian classification algorithms. An intensive review of available data has been conducted to explore the real reasons and causes of construction project delays. The results show that the postponement of delay of interim payments is at the forefront of delay factors caused by the employer’s decision. Even the least one is to leave the job site caused by the contractor’s second part of the contract, the repeated unjustified stopping of the work at the site, without permission or notice from the client’s representatives. The developed model was applied to about 97 projects and used as a prediction model. The decision tree model shows higher accuracy in the prediction.
n Segmented Optical Telescope (NGST) with hexagonal segment of spherical primary mirror can provide a 3 arc minutes field of view. Extremely Large Telescopes (ELT) in the 100m dimension would have such unprecedented scientific effectiveness that their construction would constitute a milestone comparable to that of the invention of the telescope itself and provide a truly revolutionary insight into the universe. The scientific case and the conceptual feasibility of giant filled aperture telescopes was our interested. Investigating the requirements of these imply for possible technical options in the case of a 100m telescope. For this telescope the considerable interest is the correction of the optical aberrations for the coming wavefront, th
... Show MoreAbstract Objectives: Malocclusion was and remains one of the most common problems which affects the psyche and social status of the individual, so the estimation of the malocclusion severity and needs a percentage of orthodontic treatment of Iraqi patients is the aim of this study. Method: A randomly selected 150 pairs of study models (48 male and 102 female) were involved in this study for patients attending an orthodontic clinic at College of Dentistry/ University of Baghdad seeking for treatment. The DAI scores were collected according to WHO guidelines directly from the study model with a digital caliper, score was calculated using the regression equation of 10 occlusal traits. The dental casts were classified into four groups to determ
... Show MoreThe research aims to: build and record a measure of cognitive participation among second-year female students at the College of Physical Education and Sports Sciences, University of Baghdad. The researchers used the descriptive approach in the survey style for the research sample. The sample was selected from female students and divided into: (10) female students for the survey sample, and (80) female students for the construction and codification sample. The data were statistically analyzed by the researchers using SPSS, the T-test for independent and correlated samples, Pearson's simple correlation coefficient, Cronbach's alpha, Chi-square, and Spearman-Brown. They were recruited for the samples. The study concluded that constr
... Show MoreAbstract:
Since the railway transport sector is very important in many countries of the world, we have tried through this research to study the production function of this sector and to indicate the level of productivity under which it operates.
It was found through the estimation and analysis of the production function Kub - Duglas that the railway transport sector in Iraq suffers from a decline in the level of productivity, which was reflected in the deterioration of the level of services provided for the transport of passengers and goods. This led to the loss of the sector of importance in supporting the national economy and the reluctance of most passengers an
... Show MoreEmpirical and statistical methodologies have been established to acquire accurate permeability identification and reservoir characterization, based on the rock type and reservoir performance. The identification of rock facies is usually done by either using core analysis to visually interpret lithofacies or indirectly based on well-log data. The use of well-log data for traditional facies prediction is characterized by uncertainties and can be time-consuming, particularly when working with large datasets. Thus, Machine Learning can be used to predict patterns more efficiently when applied to large data. Taking into account the electrofacies distribution, this work was conducted to predict permeability for the four wells, FH1, FH2, F
... Show MoreDuring COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show MoreIn every country in the world, there are a number of amputees who have been exposed to some accidents that led to the loss of their upper limbs. The aim of this study is to suggest a system for real-time classification of five classes of shoulder girdle motions for high-level upper limb amputees using a pattern recognition system. In the suggested system, the wavelet transform was utilized for feature extraction, and the extreme learning machine was used as a classifier. The system was tested on four intact-limbed subjects and one amputee, with eight channels involving five electromyography channels and three-axis accelerometer sensor. The study shows that the suggested pattern recognition system has the ability to classify the sho
... Show MoreDuring COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show More