Projects suspensions are between the most insistent tasks confronted by the construction field accredited to the sector’s difficulty and its essential delay risk foundations’ interdependence. Machine learning provides a perfect group of techniques, which can attack those complex systems. The study aimed to recognize and progress a wellorganized predictive data tool to examine and learn from delay sources depend on preceding data of construction projects by using decision trees and naïve Bayesian classification algorithms. An intensive review of available data has been conducted to explore the real reasons and causes of construction project delays. The results show that the postponement of delay of interim payments is at the forefront of delay factors caused by the employer’s decision. Even the least one is to leave the job site caused by the contractor’s second part of the contract, the repeated unjustified stopping of the work at the site, without permission or notice from the client’s representatives. The developed model was applied to about 97 projects and used as a prediction model. The decision tree model shows higher accuracy in the prediction.
Government spending is the tool that the state uses to achieve its various goals. The research aims to identify the most important determinants of government spending in Iraq and to indicate the type and nature of the relationship between government spending and its determinants, which will contribute to understanding the movement of government spending. The results of the co-integration test using the border test methodology showed that the variables of population growth and oil prices have a long-term effect on government spending while inflation is not significant in the long run, and that 47% of the equilibrium imbalance (short-term imbalance) in government spending in the previous period (t-) can be corrected in the current period (t)
... Show MoreThe goal of the study is to discover the best model for forecasting the exchange rate of the US dollar against the Iraqi dinar by analyzing time series using the Box Jenkis approach, which is one of the most significant subjects in the statistical sciences employed in the analysis. The exchange rate of the dollar is considered one of the most important determinants of the relative level of the health of the country's economy. It is considered the most watched, analyzed and manipulated measure by the government. There are factors affecting in determining the exchange rate, the most important of which are the amount of money, interest rate and local inflation global balance of payments. The data for the research that represents the exchange r
... Show MoreThe present research deals with the spatial variance analysis in Jwartadistrict and conducting a comparison on the spatial and seasonal changes of the vegetation cover between (2007-2013) in order to deduce the relationship between the vegetation density and the areas which are exposed to the risk of water erosion by using Plant Variation Index NDVI) C (coefficient and by using Satellite images of Landsat satellite which are taken in 2/7/2007 and Satellite images of Landsat satellite taken in 11/1/ 2013, the programs of remote sensitivity and the Geographic Information Systems.
The study reveals that there is a variance in the density of vegetation cover of the area under study betwee 2007 and 2013. Howev
... Show MoreThe purpose of this study is aimed to lay down an arranged platform suited to Iraqi constructional associations which in charge to carry out multi constructional projects, as it fulfilled management requirements and supervising, so that low - cost projects will be controlled in due term and quality. Based on primary info and observed data collected, the study thesis has been formulated in this way: Iraqi constructional sector bodies which are in charge to implement simultaneously multi constructional projects in need to reformulate its organized structure so that it will be more fitted to management and control of these projects. This thesis includes a
theoretical part contained presenting the most important resources locally and int
The precise classification of DNA sequences is pivotal in genomics, holding significant implications for personalized medicine. The stakes are particularly high when classifying key genetic markers such as BRAC, related to breast cancer susceptibility; BRAF, associated with various malignancies; and KRAS, a recognized oncogene. Conventional machine learning techniques often necessitate intricate feature engineering and may not capture the full spectrum of sequence dependencies. To ameliorate these limitations, this study employs an adapted UNet architecture, originally designed for biomedical image segmentation, to classify DNA sequences.The attention mechanism was also tested LONG WITH u-Net architecture to precisely classify DNA sequences
... Show MoreOne of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services through our ca
... Show MoreThis work implements an Electroencephalogram (EEG) signal classifier. The implemented method uses Orthogonal Polynomials (OP) to convert the EEG signal samples to moments. A Sparse Filter (SF) reduces the number of converted moments to increase the classification accuracy. A Support Vector Machine (SVM) is used to classify the reduced moments between two classes. The proposed method’s performance is tested and compared with two methods by using two datasets. The datasets are divided into 80% for training and 20% for testing, with 5 -fold used for cross-validation. The results show that this method overcomes the accuracy of other methods. The proposed method’s best accuracy is 95.6% and 99.5%, respectively. Finally, from the results, it
... Show MoreDeep learning convolution neural network has been widely used to recognize or classify voice. Various techniques have been used together with convolution neural network to prepare voice data before the training process in developing the classification model. However, not all model can produce good classification accuracy as there are many types of voice or speech. Classification of Arabic alphabet pronunciation is a one of the types of voice and accurate pronunciation is required in the learning of the Qur’an reading. Thus, the technique to process the pronunciation and training of the processed data requires specific approach. To overcome this issue, a method based on padding and deep learning convolution neural network is proposed to
... Show More