Projects suspensions are between the most insistent tasks confronted by the construction field accredited to the sector’s difficulty and its essential delay risk foundations’ interdependence. Machine learning provides a perfect group of techniques, which can attack those complex systems. The study aimed to recognize and progress a wellorganized predictive data tool to examine and learn from delay sources depend on preceding data of construction projects by using decision trees and naïve Bayesian classification algorithms. An intensive review of available data has been conducted to explore the real reasons and causes of construction project delays. The results show that the postponement of delay of interim payments is at the forefront of delay factors caused by the employer’s decision. Even the least one is to leave the job site caused by the contractor’s second part of the contract, the repeated unjustified stopping of the work at the site, without permission or notice from the client’s representatives. The developed model was applied to about 97 projects and used as a prediction model. The decision tree model shows higher accuracy in the prediction.
In this paper, two new simple, fast and efficient block matching algorithms are introduced, both methods begins blocks matching process from the image center block and moves across the blocks toward image boundaries. With each block, its motion vector is initialized using linear prediction that depending on the motion vectors of its neighbor blocks that are already scanned and their motion vectors are assessed. Also, a hybrid mechanism is introduced, it depends on mixing the proposed two predictive mechanisms with Exhaustive Search (ES) mechanism in order to gain matching accuracy near or similar to ES but with Search Time ST less than 80% of the ES. Also, it offers more control capability to reduce the search errors. The experimental tests
... Show MoreTwitter popularity has increasingly grown in the last few years, influencing life’s social, political, and business aspects. People would leave their tweets on social media about an event, and simultaneously inquire to see other people's experiences and whether they had a positive/negative opinion about that event. Sentiment Analysis can be used to obtain this categorization. Product reviews, events, and other topics from all users that comprise unstructured text comments are gathered and categorized as good, harmful, or neutral using sentiment analysis. Such issues are called polarity classifications. This study aims to use Twitter data about OK cuisine reviews obtained from the Amazon website and compare the effectiveness
... Show MoreThis study was set out to investigate factors affecting labor productivity on construction in the north of Iraq (Kurdistan) and to rank all the factors based on engineers, contractors, and designer’s opinions. 76 factors were analyzed based on previous literature and a pilot study. Next, by using online Google Form, a questionnaire form was created and sent to people who have experience in the construction industry. Afterward, the questionnaire form was sent to targeted people by email and social media apps. Factors were divided into nine groups “Management, Technical and Technology, Human and Workforce, Leadership, Motivation, Safety, Time, Material and Equipment, and External”. However, 202 respondents participated in this study,
... Show MoreThe purpose of this work is to construct complete (k,n)-arcs in the projective 2-space PG(2,q) over Galois field GF(11) by adding some points of index zero to complete (k,n–1)arcs 3  n  11. A (k,n)-arcs is a set of k points no n + 1 of which are collinear. A (k,n)-arcs is complete if it is not contained in a (k + 1,n)-arc
In general, path-planning problem is one of most important task in the field of robotics. This paper describes the path-planning problem of mobile robot based on various metaheuristic algorithms. The suitable collision free path of a robot must satisfies certain optimization criteria such as feasibility, minimum path length, safety and smoothness and so on. In this research, various three approaches namely, PSO, Firefly and proposed hybrid FFCPSO are applied in static, known environment to solve the global path-planning problem in three cases. The first case used single mobile robot, the second case used three independent mobile robots and the third case applied three follow up mobile robot. Simulation results, whi
... Show MoreSoftware Defined Network (SDN) is a new technology that separate the control plane from the data plane. SDN provides a choice in automation and programmability faster than traditional network. It supports the Quality of Service (QoS) for video surveillance application. One of most significant issues in video surveillance is how to find the best path for routing the packets between the source (IP cameras) and destination (monitoring center). The video surveillance system requires fast transmission and reliable delivery and high QoS. To improve the QoS and to achieve the optimal path, the SDN architecture is used in this paper. In addition, different routing algorithms are used with different steps. First, we eva
... Show MoreIn this study, a traumatic spinal cord injury (TSCI) classification system is proposed using a convolutional neural network (CNN) technique with automatically learned features from electromyography (EMG) signals for a non-human primate (NHP) model. A comparison between the proposed classification system and a classical classification method (k-nearest neighbors, kNN) is also presented. Developing such an NHP model with a suitable assessment tool (i.e., classifier) is a crucial step in detecting the effect of TSCI using EMG, which is expected to be essential in the evaluation of the efficacy of new TSCI treatments. Intramuscular EMG data were collected from an agonist/antagonist tail muscle pair for the pre- and post-spinal cord lesi
... Show MoreBiosensor is defined as a device that transforms the interactions between bioreceptors and analytes into a logical signal proportional to the reactants' concentration. Biosensors have different applications that aim primarily to detect diseases, medicines, food safety, the proportion of toxins in water, and other applications that ensure the safety and health of the organism. The main challenge of biosensors is represented in the difficulty of obtaining sensors with accuracy, specific sensitivity, and repeatability for each use of the patient so that they give reliable results. The rapid diversification in biosensors is due to the accuracy of the techniques and materials used in the manufacturing process and the interrelationshi
... Show MoreIn the present work, classification of radioactive wastes based on Annual Intake (AI) values is studied. Where the characterization of radionuclides was done by hand held GeLi detector with an overall efficiency better than 42%. It was noted the most predominant contaminant are Cs-137, Co-60 and Pa-234.The radioactive waste in disposal silo has been divided into five categories according to the harmful effect of radionuclides.For the purpose of storageradioactive wastein a safe manner, it wassuggesteda new method by shielding radioactive waste in each category with concrete;where the thickness of shielding is the time required to reduce the annual dose to 10%.