Projects suspensions are between the most insistent tasks confronted by the construction field accredited to the sector’s difficulty and its essential delay risk foundations’ interdependence. Machine learning provides a perfect group of techniques, which can attack those complex systems. The study aimed to recognize and progress a wellorganized predictive data tool to examine and learn from delay sources depend on preceding data of construction projects by using decision trees and naïve Bayesian classification algorithms. An intensive review of available data has been conducted to explore the real reasons and causes of construction project delays. The results show that the postponement of delay of interim payments is at the forefront of delay factors caused by the employer’s decision. Even the least one is to leave the job site caused by the contractor’s second part of the contract, the repeated unjustified stopping of the work at the site, without permission or notice from the client’s representatives. The developed model was applied to about 97 projects and used as a prediction model. The decision tree model shows higher accuracy in the prediction.
Construction is a complicated process that takes place in an almost uncontrollable environment. Although projects can be carefully planned in advance in principle, there is a chance that unforeseen events and crises can disrupt these plans, affecting project development. Because the initial investment expenditures in construction projects are so large, they may be quickly influenced by crises, resulting in significant financial losses. The 2014 financial crisis was one of the most prominent crises that Iraq faced, which significantly impacted various activities in general and the construction industry in particular. Despite the importance of crisis management systems, the researchers found a great lack of local studies looking at cr
... Show MoreConstruction is a complicated process that takes place in an almost uncontrollable environment. Although projects can be carefully planned in advance in principle, there is a chance that unforeseen events and crises can disrupt these plans, affecting project development. Because the initial investment expenditures in construction projects are so large, they may be quickly influenced by crises, resulting in significant financial losses. The 2014 financial crisis was one of the most prominent crises that Iraq faced, which significantly impacted various activities in general and the construction industry in particular. Despite the importance of crisis management systems, the researchers found a great lack of local studies l
... Show MoreThis paper presents a comparative study of two learning algorithms for the nonlinear PID neural trajectory tracking controller for mobile robot in order to follow a pre-defined path. As simple and fast tuning technique, genetic and particle swarm optimization algorithms are used to tune the nonlinear PID neural controller's parameters to find the best velocities control actions of the right wheel and left wheel for the real mobile robot. Polywog wavelet activation function is used in the structure of the nonlinear PID neural controller. Simulation results (Matlab) and experimental work (LabVIEW) show that the proposed nonlinear PID controller with PSO
learning algorithm is more effective and robust than genetic learning algorithm; thi
This study included the Zakhikhah area in the Al- Anbar desert, which it bounded on the north, east, and west by the Euphrates River and on the south by the Ramadi-Qaim road. Several exploratory field trips were taken to the study area. During this time, a semi-detailed area survey was carried out based on satellite imagery captured by American Land sat-7, topographic maps, and natural vegetation variance. All necessary field tools, including a digital camera and GPS device, were brought to determine the soil type and collect plant samples. All of these visits are planned to cover the entire state of Zakhikhah. All vegetation cover observations, identifying sampling sites and attempting to inventory and collect medicinal plants in t
... Show MoreThe subject of the Internet of Things is very important, especially at present, which is why it has attracted the attention of researchers and scientists due to its importance in human life. Through it, a person can do several things easily, accurately, and in an organized manner. The research addressed important topics, the most important of which are the concept of the Internet of Things, the history of its emergence and development, the reasons for its interest and importance, and its most prominent advantages and characteristics. The research sheds light on the structure of the Internet of Things, its structural components, and its most important components. The research dealt with the most important search engines in the Intern
... Show More
The research aims to study the reliability of government institutions, including the audit directors, which are one of the most important oversight formations in the Ministry of Construction, Housing and Public Municipalities, on which the responsibility for comprehensive auditing of all the Ministry's (municipalities) formations falls on the Managing the Audit Program according to the specification (ISO 19011: 2018) to improve the audit performance which requires compliance with the application of the audit management system in accordance with the standard Specification (ISO 19011: 2018), depending on the methodology of the case study, and using of checklists, which were chosen ac
... Show MoreThe field of autonomous robotic systems has advanced tremendously in the last few years, allowing them to perform complicated tasks in various contexts. One of the most important and useful applications of guide robots is the support of the blind. The successful implementation of this study requires a more accurate and powerful self-localization system for guide robots in indoor environments. This paper proposes a self-localization system for guide robots. To successfully implement this study, images were collected from the perspective of a robot inside a room, and a deep learning system such as a convolutional neural network (CNN) was used. An image-based self-localization guide robot image-classification system delivers a more accura
... Show MoreArabic text categorization for pattern recognitions is challenging. We propose for the first time a novel holistic method based on clustering for classifying Arabic writer. The categorization is accomplished stage-wise. Firstly, these document images are sectioned into lines, words, and characters. Secondly, their structural and statistical features are obtained from sectioned portions. Thirdly, F-Measure is used to evaluate the performance of the extracted features and their combination in different linkage methods for each distance measures and different numbers of groups. Finally, experiments are conducted on the standard KHATT dataset of Arabic handwritten text comprised of varying samples from 1000 writers. The results in the generatio
... Show More