Projects suspensions are between the most insistent tasks confronted by the construction field accredited to the sector’s difficulty and its essential delay risk foundations’ interdependence. Machine learning provides a perfect group of techniques, which can attack those complex systems. The study aimed to recognize and progress a wellorganized predictive data tool to examine and learn from delay sources depend on preceding data of construction projects by using decision trees and naïve Bayesian classification algorithms. An intensive review of available data has been conducted to explore the real reasons and causes of construction project delays. The results show that the postponement of delay of interim payments is at the forefront of delay factors caused by the employer’s decision. Even the least one is to leave the job site caused by the contractor’s second part of the contract, the repeated unjustified stopping of the work at the site, without permission or notice from the client’s representatives. The developed model was applied to about 97 projects and used as a prediction model. The decision tree model shows higher accuracy in the prediction.
The information required for construction quantities surveying is not only generated by various participants in different construction phases but also stored in different forms including graphics, text, tables, or various combinations of the three. To report a bill of quantities (BOQ), the project manager has to continuously excerpt information from various resources and record it on papers. Without adequate staff and time, this repetitive and tedious process is difficult for the project manager to handle properly and thus reduces the effectiveness and the accuracy of the quantities surveying process which creates problems during the design, tender, and construction supervision of construction projects for designers and contractors pract
... Show MoreAir pollution is one of the important problems facing Iraq. Air pollution is the result of uncontrolled emissions from factories, car exhaust electric generators, and oil refineries and often reaches unacceptable limits by international standards. These pollutants can greatly affect human health and regular population activities. For this reason, there is an urgent need for effective devices to monitor the molecular concentration of air pollutants in cities and urban areas. In this research, an optical system has been built consisting of aHelium-Neonlaser,5mWand at 632.8 nm, a glass cell with a defined size, and a power meter(Gentec-E-model: uno) where a scattering of the laser beam occurs due to air pollution. Two pollutants were examin
... Show MoreNear-ideal p-CdS/n-Si heterojunction band edge lineup has been investigated for the first time with aid of I-V and C-V measurements. The heterojunction was manufactured by deposition of CdS films prepared by chemical spray pyrolysis technique (CSP) on monocrystalline n-type silicon. The experimental data of the conduction band offset Ec and valence band offset Ec were compared with theoretical values. The band offset Ec=530meV and Ev=770meV obtained at 300K. The energy band diagram of p-CdS/n-Si HJ was constructed. C-V measurements depict that the junction was an abrupt type and the built-in voltage was determined from C-2-V plot
Oscillation criteria are obtained for all solutions of the first-order linear delay differential equations with positive and negative coefficients where we established some sufficient conditions so that every solution of (1.1) oscillate. This paper generalized the results in [11]. Some examples are considered to illustrate our main results.
The increase globally fossil fuel consumption as it represents the main source of energy around the world, and the sources of heavy oil more than light, different techniques were used to reduce the viscosity and increase mobility of heavy crude oil. this study focusing on the experimental tests and modeling with Back Feed Forward Artificial Neural Network (BFF-ANN) of the dilution technique to reduce a heavy oil viscosity that was collected from the south- Iraq oil fields using organic solvents, organic diluents with different weight percentage (5, 10 and 20 wt.% ) of (n-heptane, toluene, and a mixture of different ratio
... Show MoreBackground: the early identification of developmental disabilities allows intervention at the earliest possible point to
improve the developmental potential.
Objective: Identify the scope of knowledge of nurses toward signs of gross motor delay for children and its relation to
their demographic characteristics.
Methodology: A descriptive study design was conducted at (18) primary health care centers in first of the primary
health care sector of Alhawija District in Kirkuk Governorate. This study started from September 2010 to the end of
January 2011, in order to identify the level of nurses' knowledge toward signs of gross motor delay for children in
primary health care centers. Non probability (purposive) sample of
Abstract:
This research aims to compare Bayesian Method and Full Maximum Likelihood to estimate hierarchical Poisson regression model.
The comparison was done by simulation using different sample sizes (n = 30, 60, 120) and different Frequencies (r = 1000, 5000) for the experiments as was the adoption of the Mean Square Error to compare the preference estimation methods and then choose the best way to appreciate model and concluded that hierarchical Poisson regression model that has been appreciated Full Maximum Likelihood Full Maximum Likelihood with sample size (n = 30) is the best to represent the maternal mortality data after it has been reliance value param
... Show MoreExisting literature suggests that construction worker safety could be optimized using emerging technologies. However, the application of safety technologies in the construction industry is limited. One reason for the constrained adoption of safety technologies is the lack of empirical information for mitigating the risk of a failed adoption. The purpose of this paper is to fill the research gap through identifying key factors that predict successful adoption of safety technologies.
In total, 26 key technology adoption predictors