Natural bitumen (NB) is a highly precious material and has drawn increasing attention due to its unique properties, especially since it is available in large quantities and has been used in limited fields. In this research, the exploitation of NB from sulfur springs as an alternative energy resource in the production of asphalt pavement is evaluated. It can be concluded from the experimental results that the chemical composition and surface morphology of NB samples are different from those of base asphalt. Besides, the rheological properties of virgin NB are not sufficient for paving work. To overcome this obstacle, NB from five different springs is modified with limestone filler (LSF) to enhance its properties. LSF is a natural material and is available locally at a low price, usually used as filler material in control asphalt mixtures. The study outcomes reveal that LSF is an effective material and plays a fundamental role in improving the properties of NB since it enhances the resistance against temperature susceptibility and improves the ability of NB to disperse in asphalt mixture. Furthermore, treated NB with LSF boosts the mechanical characteristics, increases the stiffness, and strengthens the resistance against water damage for NB mixtures. Particularly, this research clarified that high Marshall stability is achieved with a treated Al-Mamora sulfur spring-NB mixture, which is 30.4% higher than that of the control mixture. At the same time, the treated Al-Askaree sulfur spring-NB mixture has a stiffness index and tensile strength ratio more than the control mixture by 45% and 3.36%, respectively. In conclusion, adding LSF to NB that is extracted from sulfur springs can produce a new type of asphalt binder more suitable for use in road pavement.
A laboratory experiment was carried out and repeated at field of College of Agricultural Engineering Sciences, University of Baghdad in 2017. First factor was three cultivars of lupine 'Giza-1', 'Giza-2' and 'Hamburg'. Second factor was three seed weights (lower weight, medium weight and higher weight) which was following the cultivars factor. Nested design was used. Results showed supremacy of 'Giza-1' cultivar significantly and gave higher germination ratio, radical length, seedling dry weight, seedling vigour index, field emergence ratio, plant height and number of leaves per plant. The treatment ('Giza-1'×higher seed weight) was supremacy significantly and gave higher germination ratio, radical length, plumule length, and seedling vigo
... Show MoreScleral acrylic resin is widely used to synthesize ocular prosthesis. However, the properties of this material change over time, thus requiring the prosthesis to be refabricated. Many studies were conducted to improve these properties by reinforcing this material with nanoparticles. This study aims to evaluate the effect of silver nanoparticle powder on the mechanical properties (transverse flexural strength, impact strength, shear bond strength, surface microhardness, and surface roughness) of scleral acrylic resin used for ocular prostheses. Two concentrations were selected from the pilot study and evaluated for their effects on scleral acrylic resin properties. According to the pilot study, 0.01 and 0.02wt% AgNPs powder improved
... Show Moreالهدف من الدراسه تحضير فئه جديده من بوليمرات السليكون P1-P4 والتي تمت على اساس استحدام ثنائي مثيل ثنائي كلورو سيلان((DCDMS مع بعض المركبات العضويه التي تحتوي مجاميع الهيدروكسيل الطرفيه والتي حضرت لاول مره M1-M4، بأستخدم البلمره التكثيفيه .كما تم تحضير متراكباتها النانويهP′1-P′4 بوجود جسيمات الفضه النانويه (Ag-NPs) باستخدام طريقة صب المحاليل. شخصت جميع التراكيب للمونمرات والبوليمرات المحضره باستخدام مطيافية
... Show MoreUsing photo electrochemical etching technique (PEC), porous silicon (PS) layers were produced on n-type silicon (Si) wafers to generate porous silicon for n-type with an orientation of (111) The results of etching time were investigated at: (5,10,15 min). X-ray diffraction experiments revealed differences between the surface of the sample sheet and the synthesized porous silicon. The largest crystal size is (30 nm) and the lowest crystal size is (28.6 nm) The analysis of Atomic Force Microscopy (AFM) and Field Emission Scanning Electron Microscope (FESEM) were used to research the morphology of porous silicon layer. As etching time increased, AFM findings showed that root mean square (RMS) of roughness and po
... Show MoreThe study aims at showing the effect of basil oil on the sensory properties of the laboratory biscuits. the results show the sensory valuation before and after the storage. the (A4) equation exceeds 15% of T exchange (3 , 4 , 5 g. basil 19 , 55 g . fats )in most of the studied sensuous qualities. Then, the (A5) equation of 20% exchange percentage (4.60g. basil oil + 18.40g. fats). Then, the (A3) equation of 10% exchange percentage (2.30g. basil oil + 20.70g. fats). Then the (A2) equation of 5% exchange percentage (1.5g. basil oil + 21.85g. fats). Finally, the control equation (A1) received the lower value of sensuous evaluation and general acceptance. Abstract differences also appeared at denotation level 0.05 between the (A2)
... Show MoreThe influence of different thickness (500,750, and 1000) nm on the structure properties electrical conductivity and hall effect measurements have been investigated on the films of copper indium selenide CuInSe2 (CIS) the films were prepared by thermal evaporation technique on glass substrates at RT from compound alloy. The XRD pattern show that the film have poly crystalline structure a, the grain size increasing with as a function the thickness. Electrical conductivity (σ), the activation energies (Ea1,Ea2), hall mobility and the carrier concentration are investigated as function of thickness. All films contain two types of transport mechanisms of free carriers increase films thickness. The electrical conductivity increase with thickness
... Show MoreIn the present study a new synthesis method has been introduced for the decoration of platinum(Pt) on the functionalized graphene nanoplatelet (GNP) and also highlighted the preparation method of nanofluids. GNP–Pt uniform nanocomposite was produced from a simple chemical reaction procedure, which included acid treatment for functionalization of GNP. The surface characterization was performed by various techniques such as XRD, FESEMand TEM. The effective thermal conductivity, density, viscosity, specific heat capacity and stability of functionalized GNP–Pt water based nanofluids were investigated in different instruments. The GNP–Pt hybrid nanofluids were prepared by dispersing the nanocomposite in base fluid without adding any surfac
... Show MoreIn this research study the effect of fish in alternating electrical properties at room temperature copper oxide membranes and fish prepared in a manner different thermal spraying chemical on a thin glass bases and heated