The bandwidth requirements of telecommunication network users increased rapidly during the last decades. Optical access technologies must provide the bandwidth demand for each user. The passive optical access networks (PONs) support a maximum data rate of 100 Gbps by using the Orthogonal Frequency Division Multiplexing (OFDM) technique in the optical access network. In this paper, the optical broadband access networks with many techniques from Time Division Multiplexing Passive Optical Networks (TDM PON) to Orthogonal Frequency Division Multiplex Passive Optical Networks (OFDM PON) are presented. The architectures, advantages, disadvantages, and main parameters of these optical access networks are discussed and reported which have many advantages to becoming next-generation broadband access networks.
Fiber Bragg Grating has many advantages where it can be used as a temperature sensor, pressure sensor or even as a refractive index sensor. Designing each of this fiber Bragg grating sensors should include some requirements. Fiber Bragg grating refractive index sensor is a very important application. In order to increase the sensing ability of fiber Bragg gratings, many methods were followed. In our proposed work, the fiber Bragg grating was written in a D-shaped optical fiber by using a phase mask method with KrFexcimer. The resultant fiber Bragg grating has a high reflectivity 99.99% with a Bragg wavelength of 1551.2 nm as a best result obtained from a phase mask with a grating period of 1057 nm. In this work it was found that the rota
... Show MoreDensely deployment of sensors is generally employed in wireless sensor networks (WSNs) to ensure energy-efficient covering of a target area. Many sensors scheduling techniques have been recently proposed for designing such energy-efficient WSNs. Sensors scheduling has been modeled, in the literature, as a generalization of minimum set covering problem (MSCP) problem. MSCP is a well-known NP-hard optimization problem used to model a large range of problems arising from scheduling, manufacturing, service planning, information retrieval, etc. In this paper, the MSCP is modeled to design an energy-efficient wireless sensor networks (WSNs) that can reliably cover a target area. Unlike other attempts in the literature, which consider only a si
... Show MoreImproving speaking skills of Iraqi EFL students was the main purpose of the current research. Thirty EFL students were selected as the research participants for achieving this aim. All students completed the pretest and then spent the next 25 weeks meeting for 90 minutes each to present their nine lectures, answer difficult questions, and get feedback on their use of language in context. Progressive-tests, posttests and delayed post-tests followed every three courses. The researcher utilized SPSS 22 to anal Analyze the data descriptively and inferentially after doing an ANOVA on repeated measurements. It has been shown that using the ideas of sociocultural theory in the classroom has an important and positive impact on students of
... Show MoreThis work represents development and implementation a programmable model for evaluating pumping technique and spectroscopic properties of solid state laser, as well as designing and constructing a suitable software program to simulate this techniques . A study of a new approach for Diode Pumped Solid State Laser systems (DPSSL), to build the optimum path technology and to manufacture a new solid state laser gain medium. From this model the threshold input power, output power optimum transmission, slop efficiency and available power were predicted. different systems configuration of diode pumped solid state laser for side pumping, end pump method using different shape type (rod,slab,disk) three main parameters are (energy transfer efficie
... Show MoreIn this review paper a number of studies and researches are surveyed, in order to assist the upcoming researchers, to know about the techniques available in the field of semantic based video retrieval. The video retrieval system is used for finding the users’ desired video among a huge number of available videos on the Internet or database. This paper gives a general discussion on the overall process of the semantic video retrieval phases. In addition to its present a generic review of techniques that has been proposed to solve the semantic gap as the major scientific problem in semantic based video retrieval. The semantic gap is formed because of the difference between the low level features that are extracted from video content and u
... Show MoreMarking content with descriptive terms that depict the image content is called “tagging,” which is a well-known method to organize content for future navigation, filtering, or searching. Manually tagging video or image content is a time-consuming and expensive process. Accordingly, the tags supplied by humans are often noisy, incomplete, subjective, and inadequate. Automatic Image Tagging can spontaneously assign semantic keywords according to the visual information of images, thereby allowing images to be retrieved, organized, and managed by tag. This paper presents a survey and analysis of the state-of-the-art approaches for the automatic tagging of video and image data. The analysis in this paper covered the publications
... Show MoreVehicle detection (VD) plays a very essential role in Intelligent Transportation Systems (ITS) that have been intensively studied within the past years. The need for intelligent facilities expanded because the total number of vehicles is increasing rapidly in urban zones. Trafï¬c monitoring is an important element in the intelligent transportation system, which involves the detection, classification, tracking, and counting of vehicles. One of the key advantages of traffic video detection is that it provides traffic supervisors with the means to decrease congestion and improve highway planning. Vehicle detection in videos combines image processing in real-time with computerized pattern recognition in flexible stages. The real-time pro
... Show MoreThe aim of this paper, is to discuss several high performance training algorithms fall into two main categories. The first category uses heuristic techniques, which were developed from an analysis of the performance of the standard gradient descent algorithm. The second category of fast algorithms uses standard numerical optimization techniques such as: quasi-Newton . Other aim is to solve the drawbacks related with these training algorithms and propose an efficient training algorithm for FFNN