Microfluidic devices provide distinct benefits for developing effective drug assays and screening. The microfluidic platforms may provide a faster and less expensive alternative. Fluids are contained in devices with considerable micrometer-scale dimensions. Owing to this tight restriction, drug assay quantities are minute (milliliters to femtoliters). In this research, a microfluidic chip consisting of micro-channels carved on substrate materials built using an Acrylic (Polymethyl Methacrylate, PMMA) chip was designed using a Carbon Dioxide (CO2) laser machine. The CO2 parameters influence the chip’s width, depth, and roughness. To have a regular channel surface, and low roughness, the laser power (60 W), with scanning speed (250 m/s), allows us to obtain microchannels with a minimum diameter of width (450 µm), depth of the channels was 89.4 µm and( Arithmetic Average Roughness Ra=2.3), (Relative roughness, Ɛ=5%) surface roughness with high accuracy and good surface quality. The functionalized multiwalled carbon nanotubes (F-MWCNTs) were used to enhance the drug signal to detect tiny Augmentin concentrations. In this work, laser microfluidic sensors have high accuracy in Augmentin detection compared to the traditional method(UV-VIS) spectrophotometer with LOD equal to 250 nM, 1 µM respectively.
This study aims to analyze the messages of a number of global news outlets on Twitter. In order to clarify the news outlets tactics of reporting, the subjects and focus during the crisis related to the spread of the Covid-19 virus. The study sample was chosen in a deliberate manner to provide descriptive results. Three news sites were selected: two of the most followed, professional and famous international news sites: New York Times and the Guardian, and one Arab news site: Al-Arabiya channel.
A total of 18,085 tweets were analyzed for the three accounts during the period from (1/3/2020) to (8/4/2020). A content analysis form was used to analyze the content of the news coverage. The results indicate an increase in th
... Show MoreThe earth's surface comprises different kinds of land cover, water resources, and soil, which create environmental factors for varied animals, plants, and humans. Knowing the significant effects of land cover is crucial for long-term development, climate change modeling, and preserving ecosystems. In this research, the Google Earth Engine platform and freely available Landsat imagery were used to investigate the impact of the expansion and degradation in urbanized areas, watersheds, and vegetative cover on the land surface temperature in Baghdad from 2004 to 2021. Land cover indices such as the Normalized Difference Vegetation Index, Normalized Difference Water Index, and Normalized Difference Built-up Index (NDVI, NDWI, an
... Show MoreThis assay rapidly detects chlorpromazine hydrochloride using its ability to reduce gold ions to form nanoparticles. Its low cost, resilience to interferences and short analysis time could facilitate environmental monitoring and biomedical analysis.
This assay rapidly detects chlorpromazine hydrochloride using its ability to reduce gold ions to form nanoparticles. Its low cost, resilience to interferences and short analysis time could facilitate environmental monitoring and biomedical analysis.
This study aims to measure and analyze the direct and indirect effects of the financial variables, namely (public spending, public revenues, internal debt, and external debt), on the non-oil productive sectors with and without bank credit as an intermediate variable, using quarterly data for the period (2004Q1–2021Q4), converted using Eviews 12. To measure the objective of the study, the path analysis method was used using IBM SPSS-AMOS. The study concluded that the direct and indirect effects of financial variables have a weak role in directing bank credit towards the productive sectors in Iraq, which amounted to (0.18), as a result of market risks or unstable expectations in the economy. In addition to the weak credit ratings of borr
... Show More