Microfluidic devices provide distinct benefits for developing effective drug assays and screening. The microfluidic platforms may provide a faster and less expensive alternative. Fluids are contained in devices with considerable micrometer-scale dimensions. Owing to this tight restriction, drug assay quantities are minute (milliliters to femtoliters). In this research, a microfluidic chip consisting of micro-channels carved on substrate materials built using an Acrylic (Polymethyl Methacrylate, PMMA) chip was designed using a Carbon Dioxide (CO2) laser machine. The CO2 parameters influence the chip’s width, depth, and roughness. To have a regular channel surface, and low roughness, the laser power (60 W), with scanning speed (250 m/s), allows us to obtain microchannels with a minimum diameter of width (450 µm), depth of the channels was 89.4 µm and( Arithmetic Average Roughness Ra=2.3), (Relative roughness, Ɛ=5%) surface roughness with high accuracy and good surface quality. The functionalized multiwalled carbon nanotubes (F-MWCNTs) were used to enhance the drug signal to detect tiny Augmentin concentrations. In this work, laser microfluidic sensors have high accuracy in Augmentin detection compared to the traditional method(UV-VIS) spectrophotometer with LOD equal to 250 nM, 1 µM respectively.
Patients infected with the COVID-19 virus develop severe pneumonia, which typically results in death. Radiological data show that the disease involves interstitial lung involvement, lung opacities, bilateral ground-glass opacities, and patchy opacities. This study aimed to improve COVID-19 diagnosis via radiological chest X-ray (CXR) image analysis, making a substantial contribution to the development of a mobile application that efficiently identifies COVID-19, saving medical professionals time and resources. It also allows for timely preventative interventions by using more than 18000 CXR lung images and the MobileNetV2 convolutional neural network (CNN) architecture. The MobileNetV2 deep-learning model performances were evaluated
... Show MoreBotnet detection develops a challenging problem in numerous fields such as order, cybersecurity, law, finance, healthcare, and so on. The botnet signifies the group of co-operated Internet connected devices controlled by cyber criminals for starting co-ordinated attacks and applying various malicious events. While the botnet is seamlessly dynamic with developing counter-measures projected by both network and host-based detection techniques, the convention techniques are failed to attain sufficient safety to botnet threats. Thus, machine learning approaches are established for detecting and classifying botnets for cybersecurity. This article presents a novel dragonfly algorithm with multi-class support vector machines enabled botnet
... Show Moreنتيجة للتطورات الأخيرة في أبحاث الطرق السريعة بالإضافة إلى زيادة استخدام المركبات، كان هناك اهتمام كبير بنظام النقل الذكي الأكثر حداثة وفعالية ودقة (ITS) في مجال رؤية الكمبيوتر أو معالجة الصور الرقمية، يلعب تحديد كائنات معينة في صورة دورًا مهمًا في إنشاء صورة شاملة. هناك تحدٍ مرتبط بالتعرف على لوحة ترخيص السيارة (VLPR) بسبب الاختلاف في وجهة النظر، والتنسيقات المتعددة، وظروف الإضاءة غير الموحدة في وقت الحصول
... Show MoreAccurate emotion categorization is an important and challenging task in computer vision and image processing fields. Facial emotion recognition system implies three important stages: Prep-processing and face area allocation, feature extraction and classification. In this study a new system based on geometric features (distances and angles) set derived from the basic facial components such as eyes, eyebrows and mouth using analytical geometry calculations. For classification stage feed forward neural network classifier is used. For evaluation purpose the Standard database "JAFFE" have been used as test material; it holds face samples for seven basic emotions. The results of conducted tests indicate that the use of suggested distances, angles
... Show MoreEnergy savings are very common in IoT sensor networks because IoT sensor nodes operate with their own limited battery. The data transmission in the IoT sensor nodes is very costly and consume much of the energy while the energy usage for data processing is considerably lower. There are several energy-saving strategies and principles, mainly dedicated to reducing the transmission of data. Therefore, with minimizing data transfers in IoT sensor networks, can conserve a considerable amount of energy. In this research, a Compression-Based Data Reduction (CBDR) technique was suggested which works in the level of IoT sensor nodes. The CBDR includes two stages of compression, a lossy SAX Quantization stage which reduces the dynamic range of the
... Show MoreSolar cells has been assembly with electrolytes including I−/I−3 redox duality employ polyacrylonitrile (PAN), ethylene carbonate (EC), propylene carbonate (PC), with double iodide salts of tetrabutylammonium iodide (TBAI) and Lithium iodide (LiI) and iodine (I2) were thoughtful for enhancing the efficiency of the solar cells. The rendering of the solar cells has been examining by alteration the weight ratio of the salts in the electrolyte. The solar cell with electrolyte comprises (60% wt. TBAI/40% wt. LiI (+I2)) display elevated efficiency of 5.189% under 1000 W/m2 light intensity. While the solar cell with electrolyte comprises (60% wt. LiI/40% wt. TBAI (+I2)) display a lower efficiency of 3.189%. The conductivity raises with the
... Show MoreBackground: Expectoration of blood that originated in the lungs or bronchial tubes is a frightening symptom for patients and often is a manifestation of significant and possibly dangerous underlying disease. Tuberculosis was and still one of the common causes followed by bronchiactasis , bronchitis, and lung cancer. Objectives: The aim of this study is to find the frequency of causes of respiratory tract bleeding in 100 patients attending alkindy teaching hospital.Type of the study: : Prospective descriptive observational study Methods of a group of patients consist of one hundred consecutive adult patients, with Lower respiratory tract bleeding are studied. History, physical examination, and a group of selected investigations performed,
... Show MoreThe increasing complexity of assaults necessitates the use of innovative intrusion detection systems (IDS) to safeguard critical assets and data. There is a higher risk of cyberattacks like data breaches and unauthorised access since cloud services have been used more frequently. The project's goal is to find out how Artificial Intelligence (AI) could enhance the IDS's ability to identify and classify network traffic and identify anomalous activities. Online dangers could be identified with IDS. An intrusion detection system, or IDS, is required to keep networks secure. We must create efficient IDS for the cloud platform as well, since it is constantly growing and permeating more aspects of our daily life. However, using standard intrusion
... Show MoreThree hundred Iraqi people participated in demographic and attitudes study about red and white meat consumption. The mean age of the participants was 50 SD ± 11 years (mean 30-72); 51% were females and 49% males, mostly in forties who lived ≥ 5 years in Baghdad. The results showed that 80% of individuals prefer red meat. A 90% of people prefer fresh meat compared to frozen and processed meat. A 60% of people buy meat from popular markets. Nearly 87% of respondents believe the improving of livestock sector is essential and 80% of people confirmed there are obstacles to development this sector. An 80% of participates thought the reasons of the high prices of local fresh meat is the lack of plann
... Show More