Microfluidic devices provide distinct benefits for developing effective drug assays and screening. The microfluidic platforms may provide a faster and less expensive alternative. Fluids are contained in devices with considerable micrometer-scale dimensions. Owing to this tight restriction, drug assay quantities are minute (milliliters to femtoliters). In this research, a microfluidic chip consisting of micro-channels carved on substrate materials built using an Acrylic (Polymethyl Methacrylate, PMMA) chip was designed using a Carbon Dioxide (CO2) laser machine. The CO2 parameters influence the chip’s width, depth, and roughness. To have a regular channel surface, and low roughness, the laser power (60 W), with scanning speed (250 m/s), allows us to obtain microchannels with a minimum diameter of width (450 µm), depth of the channels was 89.4 µm and( Arithmetic Average Roughness Ra=2.3), (Relative roughness, Ɛ=5%) surface roughness with high accuracy and good surface quality. The functionalized multiwalled carbon nanotubes (F-MWCNTs) were used to enhance the drug signal to detect tiny Augmentin concentrations. In this work, laser microfluidic sensors have high accuracy in Augmentin detection compared to the traditional method(UV-VIS) spectrophotometer with LOD equal to 250 nM, 1 µM respectively.
The study of services in villages is one of the imperative matters that must be focused on, because it leads to increased attention, which reduces the differences between the countryside and the urban. The extent of its.
It is well known that community services need to be reached by a person, unlike the anchor services that reach people, here the population distribution plays an important and prominent role in signing these services, so the dispersed distribution pattern and the gathering pattern appeared in the distribution, thus an effect on the time and distance that the person walked to obtain The services are community-based. Therefore
... Show MoreBN Rashid, International Journal of Research in Social Sciences and Humanities, 2019 - Cited by 1
Background: Even the wide use of dental implants, still there is a proportion of implants are failed due to infection. Much considerable attention has been paid to modify the implant surface. Coating of dental implant with a biocomposite material of suitable properties can improve osseointegration. And this is the main concern of this study. The aim of present study was to evaluate the use of a biocomposite coating of dental implant with (ceramic nano Al2O3 and metalic AgNo3) on the bond strength at bone – implant interface and tissue reaction. Materials and methods: A total number of forty-eight screws, CpTi dental implant used in this study. Half of these screws were coated with a biocomposite material of nano (Al2O3and AgNo3), thi
... Show MoreFor the most reliable and reproducible results for calibration or general testing purposes of two immiscible liquids, such as water in engine oil, good emulsification is vital. This study explores the impact of emulsion quality on the Fourier transform infrared (FT-IR) spectroscopy calibration standards for measuring water contamination in used or in-service engine oil, in an attempt to strengthen the specific guidelines of ASTM International standards for sample preparation. By using different emulsification techniques and readily available laboratory equipment, this work is an attempt to establish the ideal sample preparation technique for reliability, repeatability, and reproducibility for FT-IR analysis while still considering t
... Show MoreIn this paper, a national grid-connected photovoltaic (PV) system is proposed. It extracts the maximum power point (MPP) using three-incremental-steps perturb and observe (TISP&O) maximum power point tracking (MPPT) method. It improves the classic P&O by using three incremental duty ratio (ΔD) instead of a single one in the conventional P and O MPPT method. Therefore, the system's performance is improved to a higher speed and less power fluctuation around the MPP. The Boost converter controls the MPPT and then is connected to a three-phase voltage source inverter (VSI). This type of inverter needs a high and constant input voltage. A second-order low pass (LC) filter is connected to the output of VSI to reduce t
... Show MoreA hybrid cadmium sulfide nanoparticles (CdSNPs) electroluminescence (EL) device was fabricated by Phase – Segregated Method and characterized. It was fabricated as layers of (ITO/poly-TPD:CdS ) and (ITO/poly-TPD:CdS /Alq3). Poly-TPD is an excellent Hole Transport Layer (HTL), CdSNPs is an emitting layer and Alq3 as electron transport layer (ETL). The EL of Organic-Inorganic Light Emitting Diode (OILED) was studied at room temperature at 26V. This was achieved according to band-to-band transition in CdSNPs. From the I-V curve behavior, the addition of Alq3 layer decreased the transfer of electrons by about 250 times. The I-V behavior for (poly-TPD/CdS) is exponential with a maximum current of 4500 µA. While, the current i
... Show MoreAn aircraft's landing stage involves inherent hazards and problems associated with many factors, such as weather, runway conditions, pilot experiences, etc. The pilot is responsible for selecting the proper landing procedure based on information provided by the landing console operator (LCO). Given the likelihood of human decisions due to errors and biases, creating an intelligent system becomes important to predict accurate decisions. This paper proposes the fuzzy logic method, which intends to handle the uncertainty and ambiguity inherent in the landing phase, providing intelligent decision support to the pilot while reducing the workload of the LCO. The fuzzy system, built using the Mamdani approach in MATLAB software, considers critical
... Show More