Microfluidic devices provide distinct benefits for developing effective drug assays and screening. The microfluidic platforms may provide a faster and less expensive alternative. Fluids are contained in devices with considerable micrometer-scale dimensions. Owing to this tight restriction, drug assay quantities are minute (milliliters to femtoliters). In this research, a microfluidic chip consisting of micro-channels carved on substrate materials built using an Acrylic (Polymethyl Methacrylate, PMMA) chip was designed using a Carbon Dioxide (CO2) laser machine. The CO2 parameters influence the chip’s width, depth, and roughness. To have a regular channel surface, and low roughness, the laser power (60 W), with scanning speed (250 m/s), allows us to obtain microchannels with a minimum diameter of width (450 µm), depth of the channels was 89.4 µm and( Arithmetic Average Roughness Ra=2.3), (Relative roughness, Ɛ=5%) surface roughness with high accuracy and good surface quality. The functionalized multiwalled carbon nanotubes (F-MWCNTs) were used to enhance the drug signal to detect tiny Augmentin concentrations. In this work, laser microfluidic sensors have high accuracy in Augmentin detection compared to the traditional method(UV-VIS) spectrophotometer with LOD equal to 250 nM, 1 µM respectively.
The direct electron transfer behavior of hemoglobin that is immobilized onto screen-printed carbon electrode (SPCE) modified with silver nanoparticles (AgNPs) and chitosan (CS) was studied in this work. Cyclic voltametry and spectrophotometry were used to characterize the hemoglobin (Hb) bioconjunction with AgNPs and CS. Results of the modified electrode showed quasi-reversible redox peaks with a formal potential of (-0.245 V) versus Ag/AgCl in 0.1 M phosphate buffer solution (PBS), pH7, at a scan rate of 0.1 Vs-1. The charge transfer coefficient (α) was 0.48 and the apparent electron transfer rate constant (Ks) was 0.47 s-1. The electrode was used as a hydrogen peroxide biosensor with a linear response over 3 to 240 µM and a detection li
... Show MoreDiagnosing heart disease has become a very important topic for researchers specializing in artificial intelligence, because intelligence is involved in most diseases, especially after the Corona pandemic, which forced the world to turn to intelligence. Therefore, the basic idea in this research was to shed light on the diagnosis of heart diseases by relying on deep learning of a pre-trained model (Efficient b3) under the premise of using the electrical signals of the electrocardiogram and resample the signal in order to introduce it to the neural network with only trimming processing operations because it is an electrical signal whose parameters cannot be changed. The data set (China Physiological Signal Challenge -cspsc2018) was ad
... Show MoreThe expansion of web applications like e-commerce and other services yields an exponential increase in offers and choices in the web. From these needs, the recommender system applications have arisen. This research proposed a recommender system that uses user's reviews as implicit feedback to extract user preferences from their reviews to enhance personalization in addition to the explicit ratings. Diversity also improved by using k-furthest neighbor algorithm upon user's clusters. The system tested using Douban movie standard dataset from Kaggle, and show good performance.
ABSTRACT Background: According to Branemark’s protocol, the waiting period between tooth extraction and implant placement is 6–8 months; this is the late placement technique. Achieving and maintaining implant stability are prerequisites for a dental implant to be successful. Resonance Frequency Analysis (RFA) is a noninvasive diagnostic method that measures implant stability. The aim of this study was to investigate the influence of treatment protocol and implant dimensions on primary implant stability utilizing RFA. Materials and methods: This study included 63 Iraqi patients (37 male, 26 female; ranging 22-66 years). According to treatment protocol, the sample was divided into 2 groups; A (delayed) & B (immediate). Dental im
... Show MoreA time series analysis can help to observe the behavior of the system and specify the system faults. In addition, it also helps to explain the various energy flows in the system and further aid in reducing the thermodynamic losses. The intelligent supervisory LabVIEW software can monitor the incoming data from the system by using Arduino microcontroller and calculates the important parameters. Energy, exergy, and anergy analysis present in this paper to investigate the system performance as well as its components. To accomplish this, a 4-ton vertical split air conditioner based on vapor compression refrigeration cycle charged with refrigerant R-22 was modified for experimental analysis. The results showed that during 540
... Show MoreIn recent years, the performance of Spatial Data Infrastructures for governments and companies is a task that has gained ample attention. Different categories of geospatial data such as digital maps, coordinates, web maps, aerial and satellite images, etc., are required to realize the geospatial data components of Spatial Data Infrastructures. In general, there are two distinct types of geospatial data sources exist over the Internet: formal and informal data sources. Despite the growth of informal geospatial data sources, the integration between different free sources is not being achieved effectively. The adoption of this task can be considered the main advantage of this research. This article addresses the research question of how the
... Show MoreBiometrics represent the most practical method for swiftly and reliably verifying and identifying individuals based on their unique biological traits. This study addresses the increasing demand for dependable biometric identification systems by introducing an efficient approach to automatically recognize ear patterns using Convolutional Neural Networks (CNNs). Despite the widespread adoption of facial recognition technologies, the distinct features and consistency inherent in ear patterns provide a compelling alternative for biometric applications. Employing CNNs in our research automates the identification process, enhancing accuracy and adaptability across various ear shapes and orientations. The ear, being visible and easily captured in
... Show MoreFace recognition is required in various applications, and major progress has been witnessed in this area. Many face recognition algorithms have been proposed thus far; however, achieving high recognition accuracy and low execution time remains a challenge. In this work, a new scheme for face recognition is presented using hybrid orthogonal polynomials to extract features. The embedded image kernel technique is used to decrease the complexity of feature extraction, then a support vector machine is adopted to classify these features. Moreover, a fast-overlapping block processing algorithm for feature extraction is used to reduce the computation time. Extensive evaluation of the proposed method was carried out on two different face ima
... Show More