The recent advancements in security approaches have significantly increased the ability to identify and mitigate any type of threat or attack in any network infrastructure, such as a software-defined network (SDN), and protect the internet security architecture against a variety of threats or attacks. Machine learning (ML) and deep learning (DL) are among the most popular techniques for preventing distributed denial-of-service (DDoS) attacks on any kind of network. The objective of this systematic review is to identify, evaluate, and discuss new efforts on ML/DL-based DDoS attack detection strategies in SDN networks. To reach our objective, we conducted a systematic review in which we looked for publications that used ML/DL approaches to identify DDoS attacks in SDN networks between 2018 and the beginning of November 2022. To search the contemporary literature, we have extensively utilized a number of digital libraries (including IEEE, ACM, Springer, and other digital libraries) and one academic search engine (Google Scholar). We have analyzed the relevant studies and categorized the results of the SLR into five areas: (i) The different types of DDoS attack detection in ML/DL approaches; (ii) the methodologies, strengths, and weaknesses of existing ML/DL approaches for DDoS attacks detection; (iii) benchmarked datasets and classes of attacks in datasets used in the existing literature; (iv) the preprocessing strategies, hyperparameter values, experimental setups, and performance metrics used in the existing literature; and (v) current research gaps and promising future directions.
Recurrent strokes can be devastating, often resulting in severe disability or death. However, nearly 90% of the causes of recurrent stroke are modifiable, which means recurrent strokes can be averted by controlling risk factors, which are mainly behavioral and metabolic in nature. Thus, it shows that from the previous works that recurrent stroke prediction model could help in minimizing the possibility of getting recurrent stroke. Previous works have shown promising results in predicting first-time stroke cases with machine learning approaches. However, there are limited works on recurrent stroke prediction using machine learning methods. Hence, this work is proposed to perform an empirical analysis and to investigate machine learning al
... Show MoreBackground: Prosthodontic services have changed markedly due to an introduction of new materials, techniques and treatment options. The aim of this study were to identify the type of materials and the methods used by dental practitioners in their clinics to construct conventional complete dentures and to specify the type and design for removable partial dentures (RPDs); and to then compare them with those taught in dental schools. Materials and methods: A total of 153 dental practitioners in Sulaimani city completed a written questionnaire. The questionnaire included 19 questions regarding complete and RPDs fabrication. Results: Most of the practitioners provide complete dentures (81.6%) and RPDs (95.3%) in their clinics. Polyvinyl silox
... Show MoreHTH Ahmed Dheyaa Al-Obaidi,", Ali Tarik Abdulwahid', Mustafa Najah Al-Obaidi", Abeer Mundher Ali', eNeurologicalSci, 2023
The aim of this paper is to identify Nano-particles that have been used in diagnosis and treatment of leishmaniasis in Iraq. All experiments conducted in this field were based on the following nanoparticles: gold nanoparticles, silver nanoparticles, zinc nanoparticles, and sodium chloride nanoparticles. Most of these experiments were reviewed in terms of differences in the concentrations of nanoparticles and the method that was used in the experiments whether it was in vivo or in vitro. These particles used in most experiments succeeded in inhibiting the growth of Leishmania parasites.
The study aimed to assess the frequency of invasive fungal infection in patients with respiratory diseases by conventional and molecular methods. This study included 117 Broncho alveolar lavage (BAL) samples were collected from patients with respiratory disease (79 male and 38 female) with ages ranged between (20-80) years, who attended Medicine Baghdad Teaching hospital and AL-Emamain AL-Khadhymian Medical City, during the period from September 2019 to April 2020. The results in PCR versus culture methods in this study showed that out of 117 samples of fungal infections 30(25.6 %) were detected by culture method, while the 24(20.5%) samples were detected by PCR technique, the most commonly diagnosed pathogenic fungi is Candida spp.
... Show MoreThis review is concluded of 8-Hydroxyquinline (8HQ) compound and derivatives which has a very significant interests with a strong fluorescence , furthermore the relationship between divalent metal ions and characteristic of chelating . In the same way coordinated features have increase of its organic action and inorganic behavior by giving many samples of compounds which are a good chelating agents ligands with more capable of forming very stable complexes.Therefore, the role of (8HQ) is not limited on complexes only but its applications in different fields so this review will focus on demonstration preparation methods and properties of (8HQ) derivatives with their complexes and applications, hopefully that we will cover a part of scientifi
... Show MoreThe power generation of solar photovoltaic (PV) technology is being implemented in every nation worldwide due to its environmentally clean characteristics. Therefore, PV technology is significantly growing in the present applications and usage of PV power systems. Despite the strength of the PV arrays in power systems, the arrays remain susceptible to certain faults. An effective supply requires economic returns, the security of the equipment and humans, precise fault identification, diagnosis, and interruption tools. Meanwhile, the faults in unidentified arc lead to serious fire hazards to commercial, residential, and utility-scale PV systems. To ensure secure and dependable distribution of electricity, the detection of such ha
... Show More