The recent advancements in security approaches have significantly increased the ability to identify and mitigate any type of threat or attack in any network infrastructure, such as a software-defined network (SDN), and protect the internet security architecture against a variety of threats or attacks. Machine learning (ML) and deep learning (DL) are among the most popular techniques for preventing distributed denial-of-service (DDoS) attacks on any kind of network. The objective of this systematic review is to identify, evaluate, and discuss new efforts on ML/DL-based DDoS attack detection strategies in SDN networks. To reach our objective, we conducted a systematic review in which we looked for publications that used ML/DL approaches to identify DDoS attacks in SDN networks between 2018 and the beginning of November 2022. To search the contemporary literature, we have extensively utilized a number of digital libraries (including IEEE, ACM, Springer, and other digital libraries) and one academic search engine (Google Scholar). We have analyzed the relevant studies and categorized the results of the SLR into five areas: (i) The different types of DDoS attack detection in ML/DL approaches; (ii) the methodologies, strengths, and weaknesses of existing ML/DL approaches for DDoS attacks detection; (iii) benchmarked datasets and classes of attacks in datasets used in the existing literature; (iv) the preprocessing strategies, hyperparameter values, experimental setups, and performance metrics used in the existing literature; and (v) current research gaps and promising future directions.
The "Nudge" Theory is considered one of the most recent theories, which is clear in the economic, health, and educational sectors, due to the intensity of studies on it and its applications, but it has not yet been included in crime prevention studies. The use of Nudge theory appears to enrich the theory in the field of crime prevention, and to provide modern, effective, and implementable mechanisms.
The study deals with the "integrative review" approach, which is a distinctive form of research that generates new knowledge on a topic through reviewing, criticizing, and synthesizing representative literature on the topic in an integrated manner so that new frameworks and perspectives are created around it.
The study is bas
... Show MoreLiquefied petroleum gases (LPG) consist of hydrocarbons obtained by refining crude oil, either from propane or butane or a mixture of the two. There are often other components such as propylene, butylene or other hydrocarbons, but they are not the main component. The study aims to review previous studies dealing with designing an LPG system to deliver gas to residential campuses and buildings. LPG is extracted from natural gas NG by several processes, passing through fractionation towers and then pressuring into CNG storage tanks. Gas contains several problems, including gas leakage through the pipes and leads to fires or explosions in LPG storage and distribution tanks, so safety conditions were taken in the design and implementation. T
... Show MoreThe research aims to identify the future teachers' attitudes toward cloud computing in the Kingdom of Saudi Arabia from their point of view. The research adopted the descriptive approach, and a questionnaire was applied to a random sample of (370) male and female teachers in governmental and private general education schools in the Al-Jouf region, Saudi Arabia. The results of the research concluded that the reality of future teachers' attitudes towards cloud computing in the Kingdom of Saudi Arabia from their point of view is very high and that most areas of using computing are in the field of assessment, then teaching, and activities. The challenges of future teachers' attitudes toward cloud computing are recorded at a high level, parti
... Show MoreImitation learning is an effective method for training an autonomous agent to accomplish a task by imitating expert behaviors in their demonstrations. However, traditional imitation learning methods require a large number of expert demonstrations in order to learn a complex behavior. Such a disadvantage has limited the potential of imitation learning in complex tasks where the expert demonstrations are not sufficient. In order to address the problem, we propose a Generative Adversarial Network-based model which is designed to learn optimal policies using only a single demonstration. The proposed model is evaluated on two simulated tasks in comparison with other methods. The results show that our proposed model is capable of completing co
... Show MoreSemantic segmentation realization and understanding is a stringent task not just for computer vision but also in the researches of the sciences of earth, semantic segmentation decompose compound architectures in one elements, the most mutual object in a civil outside or inside senses must classified then reinforced with information meaning of all object, it’s a method for labeling and clustering point cloud automatically. Three dimensions natural scenes classification need a point cloud dataset to representation data format as input, many challenge appeared with working of 3d data like: little number, resolution and accurate of three Dimensional dataset . Deep learning now is the po
Many letters and theses written on the subject of consensus, as well as in measurement,
But we tried to address a topic of consensus
Building a blind measuring guide.
We have tried to explain the meaning of convening, then the statement of consensus in language and terminology and then the statement of measurement
Also, we have shown the types of consensus mentioned by the jurists, and this is how much was in the first topic, either
The second section included the statement of the doctrines of the blind in the matter, and then the evidence of each doctrine and discussed.
We followed it with the most correct opinion statement and concluded the research with some of the conclusions we reached through
search.
The aims of the lecture should be clearly defmed. These will help to define the teaching methods and the structure. If, for example, the purpose of the lecture is to introduce new knowledge and concepts, then a classic lecture structure might be most appropriate. On the other hand, if the purpose is to make the students aware of different approaches to a particular clinical problem, a problem oriented design in which alternative approaches are presented and discussed might be a more appropriate fonnat.
Lectures are still a common teaching methOd in both undergraduate and postgraduak medical education. Properly done, the lectwe is a creative and personal work by the teachll:l modeled upon his intellectual scaffolding. Few other fonns o