The recent advancements in security approaches have significantly increased the ability to identify and mitigate any type of threat or attack in any network infrastructure, such as a software-defined network (SDN), and protect the internet security architecture against a variety of threats or attacks. Machine learning (ML) and deep learning (DL) are among the most popular techniques for preventing distributed denial-of-service (DDoS) attacks on any kind of network. The objective of this systematic review is to identify, evaluate, and discuss new efforts on ML/DL-based DDoS attack detection strategies in SDN networks. To reach our objective, we conducted a systematic review in which we looked for publications that used ML/DL approaches to identify DDoS attacks in SDN networks between 2018 and the beginning of November 2022. To search the contemporary literature, we have extensively utilized a number of digital libraries (including IEEE, ACM, Springer, and other digital libraries) and one academic search engine (Google Scholar). We have analyzed the relevant studies and categorized the results of the SLR into five areas: (i) The different types of DDoS attack detection in ML/DL approaches; (ii) the methodologies, strengths, and weaknesses of existing ML/DL approaches for DDoS attacks detection; (iii) benchmarked datasets and classes of attacks in datasets used in the existing literature; (iv) the preprocessing strategies, hyperparameter values, experimental setups, and performance metrics used in the existing literature; and (v) current research gaps and promising future directions.
In light of the corona pandemic, educational institutions have moved to learning and teaching via the Internet and e-learning ,and this is considered a turning point in course of higher education in Iraq in particular and education in general, which generated a great challenge for educational institutions to achieve the highest possible levels in practices and processes to reach the highest quality of their outputs from graduate students to the labor market that auditing performance by adopting e-learning standards is one of the effective tools that help the management of educational institutions by providing information on the ex
... Show MoreHigh-resolution imaging of celestial bodies, especially the sun, is essential for understanding dynamic phenomena and surface details. However, the Earth's atmospheric turbulence distorts the incoming light wavefront, which poses a challenge for accurate solar imaging. Solar granulation, the formation of granules and intergranular lanes on the sun's surface, is important for studying solar activity. This paper investigates the impact of atmospheric turbulence-induced wavefront distortions on solar granule imaging and evaluates, both visually and statistically, the effectiveness of Zonal Adaptive Optics (AO) systems in correcting these distortions. Utilizing cellular automata for granulation modelling and Zonal AO correction methods,
... Show MoreA new two-way nesting technique is presented for a multiple nested-grid ocean modelling system. The new technique uses explicit center finite difference and leapfrog schemes to exchange information between the different subcomponents of the nested-grid system. The performance of the different nesting techniques is compared, using two independent nested-grid modelling systems. In this paper, a new nesting algorithm is described and some preliminary results are demonstrated. The validity of the nesting method is shown in some problems for the depth averaged of 2D linear shallow water equation.
COVID 19 has spread rapidly around the world due to the lack of a suitable vaccine; therefore the early prediction of those infected with this virus is extremely important attempting to control it by quarantining the infected people and giving them possible medical attention to limit its spread. This work suggests a model for predicting the COVID 19 virus using feature selection techniques. The proposed model consists of three stages which include the preprocessing stage, the features selection stage, and the classification stage. This work uses a data set consists of 8571 records, with forty features for patients from different countries. Two feature selection techniques are used in
Landforms on the earth surface are so expensive to map or monitor. Remote Sensing observations from space platforms provide a synoptic view of terrain on images. Satellite multispectral data have an advantage in that the image data in various bands can be subjected to digital enhancement techniques for highlighting contrasts in objects for improving image interpretability. Geomorphological mapping involves the partitioning of the terrain into conceptual spatial entities based upon criteria. This paper illustrates how geomorphometry and mapping approaches can be used to produce geomorphological information related to the land surface, landforms and geomorphic systems. Remote Sensing application at Razzaza–Habbaria area southwest of Razz
... Show More<span>We present the linearization of an ultra-wideband low noise amplifier (UWB-LNA) operating from 2GHz to 11GHz through combining two linearization methods. The used linearization techniques are the combination of post-distortion cancellation and derivative-superposition linearization methods. The linearized UWB-LNA shows an improved linearity (IIP3) of +12dBm, a minimum noise figure (NF<sub>min.</sub>) of 3.6dB, input and output insertion losses (S<sub>11</sub> and S<sub>22</sub>) below -9dB over the entire working bandwidth, midband gain of 6dB at 5.8GHz, and overall circuit power consumption of 24mW supplied from a 1.5V voltage source. Both UWB-LNA and linearized UWB-LNA designs are
... Show More