The recent advancements in security approaches have significantly increased the ability to identify and mitigate any type of threat or attack in any network infrastructure, such as a software-defined network (SDN), and protect the internet security architecture against a variety of threats or attacks. Machine learning (ML) and deep learning (DL) are among the most popular techniques for preventing distributed denial-of-service (DDoS) attacks on any kind of network. The objective of this systematic review is to identify, evaluate, and discuss new efforts on ML/DL-based DDoS attack detection strategies in SDN networks. To reach our objective, we conducted a systematic review in which we looked for publications that used ML/DL approaches to identify DDoS attacks in SDN networks between 2018 and the beginning of November 2022. To search the contemporary literature, we have extensively utilized a number of digital libraries (including IEEE, ACM, Springer, and other digital libraries) and one academic search engine (Google Scholar). We have analyzed the relevant studies and categorized the results of the SLR into five areas: (i) The different types of DDoS attack detection in ML/DL approaches; (ii) the methodologies, strengths, and weaknesses of existing ML/DL approaches for DDoS attacks detection; (iii) benchmarked datasets and classes of attacks in datasets used in the existing literature; (iv) the preprocessing strategies, hyperparameter values, experimental setups, and performance metrics used in the existing literature; and (v) current research gaps and promising future directions.
Estimating an individual's age from a photograph of their face is critical in many applications, including intelligence and defense, border security and human-machine interaction, as well as soft biometric recognition. There has been recent progress in this discipline that focuses on the idea of deep learning. These solutions need the creation and training of deep neural networks for the sole purpose of resolving this issue. In addition, pre-trained deep neural networks are utilized in the research process for the purpose of facial recognition and fine-tuning for accurate outcomes. The purpose of this study was to offer a method for estimating human ages from the frontal view of the face in a manner that is as accurate as possible and takes
... Show MoreThe proliferation of many editing programs based on artificial intelligence techniques has contributed to the emergence of deepfake technology. Deepfakes are committed to fabricating and falsifying facts by making a person do actions or say words that he never did or said. So that developing an algorithm for deepfakes detection is very important to discriminate real from fake media. Convolutional neural networks (CNNs) are among the most complex classifiers, but choosing the nature of the data fed to these networks is extremely important. For this reason, we capture fine texture details of input data frames using 16 Gabor filters indifferent directions and then feed them to a binary CNN classifier instead of using the red-green-blue
... Show MoreMonaural source separation is a challenging issue due to the fact that there is only a single channel available; however, there is an unlimited range of possible solutions. In this paper, a monaural source separation model based hybrid deep learning model, which consists of convolution neural network (CNN), dense neural network (DNN) and recurrent neural network (RNN), will be presented. A trial and error method will be used to optimize the number of layers in the proposed model. Moreover, the effects of the learning rate, optimization algorithms, and the number of epochs on the separation performance will be explored. Our model was evaluated using the MIR-1K dataset for singing voice separation. Moreover, the proposed approach achi
... Show MoreAnalyzing sentiment and emotions in Arabic texts on social networking sites has gained wide interest from researchers. It has been an active research topic in recent years due to its importance in analyzing reviewers' opinions. The Iraqi dialect is one of the Arabic dialects used in social networking sites, characterized by its complexity and, therefore, the difficulty of analyzing sentiment. This work presents a hybrid deep learning model consisting of a Convolution Neural Network (CNN) and the Gated Recurrent Units (GRU) to analyze sentiment and emotions in Iraqi texts. Three Iraqi datasets (Iraqi Arab Emotions Data Set (IAEDS), Annotated Corpus of Mesopotamian-Iraqi Dialect (ACMID), and Iraqi Arabic Dataset (IAD)) col
... Show MoreSentiment analysis is one of the major fields in natural language processing whose main task is to extract sentiments, opinions, attitudes, and emotions from a subjective text. And for its importance in decision making and in people's trust with reviews on web sites, there are many academic researches to address sentiment analysis problems. Deep Learning (DL) is a powerful Machine Learning (ML) technique that has emerged with its ability of feature representation and differentiating data, leading to state-of-the-art prediction results. In recent years, DL has been widely used in sentiment analysis, however, there is scarce in its implementation in the Arabic language field. Most of the previous researches address other l
... Show MoreThe research seeks to identify the effectiveness of a selective program in modifying irrational thinking that causes anger among an important class of societies in general. namely teachers. Specifically female teachers because of the pressures they suffer because of the nature of this profession. It may develop into anger outburst, which may cause irrational thinking arose as a result of the different situations they are going through. The sample of the program consisted of (12) teachers in Egypt, from different educational sectors. The researcher intended to clarify the emotion of anger and the irrational thoughts associated with it and the contribution of the selective counseling program in modifying those irrational thinking. This was
... Show MoreThe current study included a review of the registration and description of the Theretra alecto Boi, 1827 (Levant hawk moth), samples were collected from various areas of the Baghdad belt and the provinces of the Middle Euphrates, confirmation in the description was on the most important parts of the body included the head and it's appendages, pronotum, wings as well as male and female genitalia. The morphological characteristics under study were enhanced by illustrations and images. Information on the locations and date of the collection was also confirmed. This study aims to identify the most important characteristics of the diagnosis of the species and the review of appearance variations, especially the analytical style of wings, coupling
... Show MoreObjective: To review and see the pattern of histopathological diagnoses of one year appendectomy specimens.
Methodology: This retrospective study was carried in Sulaimani Teaching Hospital over the period of one year (from 1st
of January to 31st of December 2009). All pathological reports were reviewed retrospectively for patient’s age, sex,
histopathological diagnosis and operative findings (if present). Histopathological diagnoses then were classified into
either positive or negative for acute inflammation. Any associated findings or any surgical specimen removed with the
appendix was recorded. The obtained data were analyzed by using the statistical package social sciences (SPSS) version
19; with Chi square to test