Preferred Language
Articles
/
SReOh5ABVTCNdQwCmYwj
Thermal Enhancement from Pin Fins by Using Elliptical Perforations with Different Inclination Angles
...Show More Authors
Abstract<p>Many of the proposed methods introduce the perforated fin with the straight direction to improve the thermal performance of the heat sink. The innovative form of the perforated fin (with inclination angles) was considered. Present rectangular pin fins consist of elliptical perforations with two models and two cases. The signum function is used for modeling the opposite and the mutable approach of the heat transfer area. To find the general solution, the degenerate hypergeometric equation was used as a new derivative method and then solved by Kummer's series. Two validation methods (previous work and Ansys 16.0‐Steady State Thermal) are considered. The strong agreement of the validation results (0.31% to 0.52%) lends to the reliability of the presented model. It was found that use of the perforated fin leads to decreased thermal resistance and improvement in the thermal performance of the pin fin by enhancing the heat transfer and increasing Nusselt number. Also, the increase of the inclination angle, size, and number of perforations can be used to optimize the present model by maximizing the heat transfer area and minimizing both the weight and length of the pin fins.</p>
Scopus Crossref
View Publication
Publication Date
Wed Jan 01 2020
Journal Name
Advanced Composites Letters
Enhanced thermal and electrical properties of epoxy/carbon fiber–silicon carbide composites
...Show More Authors

The silicon carbide/carbon fiber (SiC/CF) hybrid fillers were introduced to improve the electrical and thermal conductivities of the epoxy resin composites. Results of Fourier transform infrared spectroscopy revealed that the peaks at 3532 and 2850 cm−1 relate to carboxylic acid O–H stretching and aldehyde C–H stretching appearing deeper with an increased volume fraction of SiC. Scanning electron microscopic image shows a better interface bonding between the fiber and the matrix when the volume fraction of SiC particles are increased. As frequency increases from 102 Hz to 106 Hz, dielectric constants decrease slightly. Dissipation factor (tan δ) values keep low a

... Show More
View Publication
Scopus (30)
Crossref (38)
Scopus Clarivate Crossref
Publication Date
Sat Sep 01 2018
Journal Name
Case Studies In Thermal Engineering
An investigation of dynamic behavior of the cylindrical shells under thermal effect
...Show More Authors

View Publication
Scopus (24)
Crossref (15)
Scopus Clarivate Crossref
Publication Date
Mon Nov 01 2010
Journal Name
Iraqi Journal Of Physics
The Effect of metals as Additives on Thermal conductivity of Epoxy Resin
...Show More Authors

A hand lay-up method was used to prepare Epoxy/ metal composites. Epoxy resin (EP) was used as a matrix with metal particles (Al, Cu, and Fe) as fillers.
The preparation method includes preparing square panels of composites with different weight percentage of fillers (10, 20, 30, 40, and 50%). Standard specimens (88mm in diameter) for thermal conductivity tests were prepared to measure thermal conductivity kexp.The result of experimental thermal conductivity kexp, for EP/metal composites show that, kexp increase with increasing weight percentage, For EP/ Al and EP/Cu composites, and it have have maximum values of 0.33 and 0.35 W/m.K, respectively. While kexp for EP/ Fe composite show slight increase with maximum value of 0.186 W/m.K.

... Show More
View Publication Preview PDF
Publication Date
Sat Jul 28 2018
Journal Name
Journal Of Engineering
Heat Transfer and Thermal Expansion of Coefficient EP -(MWCNT/x-TiO2)Nanocomposites
...Show More Authors

The thermal properties (thermal transfer and thermal expansion coefficient) of the enhanced epoxy resin (MWCNT / x-TiO2) were studied by weight ratios with the values (0%, 3%, 5%, 7% and 10%) and a constant ratio of 3% of MWCNT. The ultrasonic technology was used to prepare the neat and composites which were then poured into Teflon molds according to standard conditions. Thermo-analyzer sensor technology was used to measure thermal transfer (thermal conductivity, thermal flow, thermal diffusion, thermal energy and heat resistance). The thermal conductivity, flow, and thermal conductivity values were increased sequentially by increasing the weight ratio of the filler while the results of stored energy values an

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Feb 04 2019
Journal Name
Iraqi Journal Of Physics
Rapid thermal oxidation of copper nanostructure thin film for solar cell fabrication
...Show More Authors

In the present work is the deposition of copper oxide using the pulsed laser deposition technique using Reactive Pulsed Laser as a Deposition technique (RPLD), 1.064μm, 7 nsec Q-switch Nd-YAG laser with 400 mJ/cm2 laser energy’s has been used to ablated high purity cupper target and deposited on the porous silicon substrates recorded and study the effect of rapid thermal annealing on the structural characteristics, morphological, electrical characteristics and properties of the solar cell. Results of AFM likelihood of improved absorption, thereby reducing the reflection compared with crystalline silicon surface. The results showed the characteristics of the solar cell and a clear improvement in the efficiency of the solar cell in the

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Nov 01 2023
Journal Name
Solar Energy
Optimizing performance of water-cooled photovoltaic-thermal modules: A 3D numerical approach
...Show More Authors

To evaluate and improve the efficiency of photovoltaic solar modules connected with linear pipes for water supply, a three-dimensional numerical simulation is created and simulated via commercial software (Ansys-Fluent). The optimization utilizes the principles of the 1st and 2nd laws of thermodynamics by employing the Response Surface Method (RSM). Various design parameters, including the coolant inlet velocity, tube diameter, panel dimensions, and solar radiation intensity, are systematically varied to investigate their impacts on energetic and exergitic efficiencies and destroyed exergy. The relationship between the design parameters and the system responses is validated through the development of a predictive model. Both single and mult

... Show More
View Publication
Scopus (27)
Crossref (31)
Scopus Clarivate Crossref
Publication Date
Sun Dec 01 2019
Journal Name
Materials Science-poland
Electrical and thermal characteristics of MWCNTs modified carbon fiber/epoxy composite films
...Show More Authors
Abstract<p>To enhance interfacial bonding between carbon fibers and epoxy matrix, the carbon fibers have been modified with multiwall carbon nanotubes (MWCNTs) using the dip- coating technique. FT-IR spectrum of the MWCNTs shows a peak at 1640 cm<sup>−1</sup> corresponding to the stretching mode of the C=C double bond which forms the framework of the carbon nanotube sidewall. The broad peak at 3430 cm<sup>−1</sup> is due to O–H stretching vibration of hydroxyl groups and the peak at 1712 cm<sup>−1</sup> corresponds to the carboxylic (C=O) group attached to the carbon fiber. The peaks at 2927 cm<sup>−1</sup> and 2862 cm<sup>−1</sup> ar</p> ... Show More
View Publication
Scopus (46)
Crossref (42)
Scopus Clarivate Crossref
Publication Date
Tue May 16 2023
Journal Name
Steel And Composite Structures
Thermal buckling and stability of laminated plates under non uniform temperature distribution
...Show More Authors

Stability of laminated plate under thermal load varied linearly along thickness, is developed using a higher order displacement field which depend on a parameter “m”, whose value is optimized to get results closest to three-dimension elasticity results. Hamilton, s principle is used to derive equations of motion for laminated plates. These equations are solved using Navier-type for simply supported boundary conditions to obtain non uniform critical thermal buckling and fundamental frequency under a ratio of this load. Many design parameters of cross ply and angle ply laminates such as, number of layers, aspect ratios and E1/E2 ratios for thick and thin plates are investigated. It is observed that linear and uniform distribution of

... Show More
Scopus (3)
Scopus
Publication Date
Tue Feb 03 2026
Journal Name
Journal Of Baghdad College Of Dentistry
A Comparative Evaluation of the Centering Ability and Canal Transportation of Simulated S-Shaped Canals Instrumented with Different Nickel –Titanium Rotary Systems
...Show More Authors

Background: The purpose of this study was to evaluate and compare centering ability and canal transportation of simulated S-shaped canals instrumented with four different types of rotary nickel-titanium systems. Materials and Methods: Forty simulated S-shaped canals in resin blocks were divided into four groups of ten each and were instrumented to an apical size 25 by different instrumentation technique using ProTaper Universal files (group A), ProTaperNext (group B), Reciproc (group C) and WaveOne (group D).Centering ability and canal transportation was measured at (11) measuring points from D0 to D10 bysuperimposion of the pre- and post-operative images obtained by using digital camera in standardized manner. An assessment of the canals

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Apr 16 2017
Journal Name
Tikrit Journal For Dental Sciences
Evaluation of Apical Transportation and Curve Straightening of Curved Root Canals after Preparation with Different Nickel - Titanium Rotary Systems (Comparative in Vitro Study)
...Show More Authors

The goals of endodontic preparation were to shape and clean the space of the root canal and remove microorganisms, affected dentin and pulp, the apical foramen and the canal curve should be protected from being transported during endodontic canal preparation. The aim of this study was to evaluate the curve straightening of curved root canals and apical transportation after preparation with four rotary systems. Forty mesial roots of the lower 1st molars teeth only the mesiobuccal canals were used, these roots were immersed into cold clear acrylic , the teeth roots divided into four groups according to rotary system used for preparation of the canals (ten roots for each group):. group I: ProTaper Next rotary system, group II: IRaCe Plus rotar

... Show More
View Publication Preview PDF