The Zubair reservoir in the Abu-Amood field is considered a shaly sand reservoir in the south of Iraq. The geological model is created for identifying the facies, distributing the petrophysical properties and estimating the volume of hydrocarbon in place. When the data processing by Interactive Petrophysics (IP) software is completed and estimated the permeability reservoir by using the hydraulic unit method then, three main steps are applied to build the geological model, begins with creating a structural, facies and property models. five zones the reservoirs were divided (three reservoir units and two cap rocks) depending on the variation of petrophysical properties (porosity and permeability) that results from IP software interpretation. Five wells that penetrate the lower Cretaceous Formation (Zubair reservoir) are used to construct the geological model. ZUB-1 unit considered as the most important zone which have a good petrophysical parameters about 24% for porosity, 800 md permeability, 38% water saturation and 85% net to gross. The initial oil in place is estimated to be about 1.7898*109 STB. Finally, 3D geological model support in improving and estimates the hydrocarbon potentialities in oil field and enhances the production of the field.
The purpose of this paper is to model and forecast the white oil during the period (2012-2019) using volatility GARCH-class. After showing that squared returns of white oil have a significant long memory in the volatility, the return series based on fractional GARCH models are estimated and forecasted for the mean and volatility by quasi maximum likelihood QML as a traditional method. While the competition includes machine learning approaches using Support Vector Regression (SVR). Results showed that the best appropriate model among many other models to forecast the volatility, depending on the lowest value of Akaike information criterion and Schwartz information criterion, also the parameters must be significant. In addition, the residuals
... Show MoreFinding communities of connected individuals in complex networks is challenging, yet crucial for understanding different real-world societies and their interactions. Recently attention has turned to discover the dynamics of such communities. However, detecting accurate community structures that evolve over time adds additional challenges. Almost all the state-of-the-art algorithms are designed based on seemingly the same principle while treating the problem as a coupled optimization model to simultaneously identify community structures and their evolution over time. Unlike all these studies, the current work aims to individually consider this three measures, i.e. intra-community score, inter-community score, and evolution of community over
... Show MoreThis paper discussed the solution of an equivalent circuit of solar cell, where a single diode model is presented. The nonlinear equation of this model has suggested and analyzed an iterative algorithm, which work well for this equation with a suitable initial value for the iterative. The convergence of the proposed method is discussed. It is established that the algorithm has convergence of order six. The proposed algorithm is achieved with a various values of load resistance. Equation by means of equivalent circuit of a solar cell so all the determinations is achieved using Matlab in ambient temperature. The obtained results of this new method are given and the absolute errors is demonstrated.
It is well known that the rate of penetration is a key function for drilling engineers since it is directly related to the final well cost, thus reducing the non-productive time is a target of interest for all oil companies by optimizing the drilling processes or drilling parameters. These drilling parameters include mechanical (RPM, WOB, flow rate, SPP, torque and hook load) and travel transit time. The big challenge prediction is the complex interconnection between the drilling parameters so artificial intelligence techniques have been conducted in this study to predict ROP using operational drilling parameters and formation characteristics. In the current study, three AI techniques have been used which are neural network, fuzzy i
... Show MoreThe study of the distribution of major oxides and heavy metals in some plants collecting and analyzing eighteen plant samples of vegetables including carrot, onion, eggplant, cucumber, and okra obtained from Abu Ghraib land located about 20 km west of Baghdad, Iraq. Eighteen plant samples of vegetables,.Heavy metals can have a severe impact if released into the environment, even in trace quantities. These can enter the food chain from aquatic and agricultural ecosystems and indirectly threaten human health.. Trace elements and oxides of As, Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Se, Th, U, V, and Zn were measured in plant samples using an X-Ray Fluorescence Instrument (XRF). TEs analyses of vegetables were performed in the Iraqi German Lab
... Show MoreThe electron correlation effect for inter-shell have been analysed in terms of Fermi hole and partial Fermi hole for Li-atom in the excited states (1s2 3p) and (1s2 3d) using Hartree-Fock approximation (HF). Fermi hole Δf(r12) and partial Fermi hole Δg(r12 ,r1) were determined in position space. Each plot of the physical properties in this work is normalized to unity. The calculation was performed using Mathcad 14 program.
The first flow injection spectrophotometric method is characterized by its speed and sensitivity which have been developed for the determination of promethazine-HCl in pure and pharmaceutical preparation. It is based on the in situ detection of colored cationic radicals formed via oxidation of the drug with sodium persulphate to pinkish-red species and the same species was determined by using homemade Ayah 3SX3-3D solar flow injection photometer. Optimum conditions were obtained by using the high intensive green light emitted diode as a source. Linear dynamic range for the absorbance versus promethazine-HCl concentration was 0-7 mmol.L-1, with the correlation coefficient (r) was 0.9904 while the percentage linearity (r2%) was 98.09%. the L.
... Show MoreThis paper introduces a non-conventional approach with multi-dimensional random sampling to solve a cocaine abuse model with statistical probability. The mean Latin hypercube finite difference (MLHFD) method is proposed for the first time via hybrid integration of the classical numerical finite difference (FD) formula with Latin hypercube sampling (LHS) technique to create a random distribution for the model parameters which are dependent on time t . The LHS technique gives advantage to MLHFD method to produce fast variation of the parameters’ values via number of multidimensional simulations (100, 1000 and 5000). The generated Latin hypercube sample which is random or non-deterministic in nature is further integrated with the FD method t
... Show MoreThe goal of the research is to develop a sustainable rating system for roadway projects in Iraq for all of the life cycle stages of the projects which are (planning, design, construction and operation and maintenance). This paper investigates the criteria and its weightings of the suggested roadway rating system depending on sustainable planning activities. The methodology started in suggesting a group of sustainable criteria for planning stage and then suggesting weights from (1-5) points for each one of it. After that data were collected by using a closed questionnaire directed to the roadway experts group in order to verify the criteria weightings based on the relative importance of the roadway related impacts
... Show More