In some cases, surgeons need to navigate through the computer system for reconfirmation patients’ details and unfortunately surgeons unable to manage both computer system and operation at the same time. In this paper we propose a solution for this problem especially designed for heart surgeon, by introducing voice activation system with 3D visualization of Angiographic images, 2D visualization of Echocardiography processed video and selected patient’s details. In this study, the processing, approximation of the 3D angiography and the visualization of the 2D echocardiography video with voice recognition control are the most challenging work. The work involve with predicting 3D coronary three from 2D angiography image and also image enhancement which utilize the median filtering, morphological opening and contrast improvement and heart boundaries detection. With 3D reconstruction of 2D angiography images, the system was able to display 3D coronary tree, with voice activation. The system was able to rotate, zoom in and out the 3D image, the 2D echocardiography video and display patient’s information that needed by the surgeon while doing heart surgery. Development of this system is useful for surgeons, where they can navigate the system using voice commands instead of keyboard and mouse. Medical practitioners also can facilitate more the angiogram and echocardiograph images. With this system, it can help and ease the work of surgeons in analyzing and processing the medical images especially in-vivo procedure.
In this paper, an efficient method for compressing color image is presented. It allows progressive transmission and zooming of the image without need to extra storage. The proposed method is going to be accomplished using cubic Bezier surface (CBI) representation on wide area of images in order to prune the image component that shows large scale variation. Then, the produced cubic Bezier surface is subtracted from the image signal to get the residue component. Then, bi-orthogonal wavelet transform is applied to decompose the residue component. Both scalar quantization and quad tree coding steps are applied on the produced wavelet sub bands. Finally, adaptive shift coding is applied to handle the remaining statistical redundancy and attain e
... Show MoreAnemia is one of the common types of blood diseases, it lead to lack of number of RBCs (Red Blood Cell) and amount hemoglobin level in the blood is lower than normal.
In this paper a new algorithm is presented to recognize Anemia in digital images based on moment variant. The algorithm is accomplished using the following phases: preprocessing, segmentation, feature extraction and classification (using Decision Tree), the extracted features that are used for classification are Moment Invariant and Geometric Feature.
The Best obtained classification rates was 84% is obtained when using Moment Invariants features and 74 % is obtained when using Geometric Feature. Results indicate that the proposed algorithm is very effective in detect
The digital image with the wavelet tools is increasing nowadays with MATLAB library, by using this method based on invariant moments which are a set of seven moments can be derived from the second and third moments , which can be calculated after converting the image from colored map to gray scale , rescale the image to (512 * 512 ) pixel , dividing the image in to four equal pieces (256 * 256 ) for each piece , then for gray scale image ( 512 * 512 ) and the four pieces (256 * 256 ) calculate wavelet with moment and invariant moment, then store the result with the author ,owner for this image to build data base for the original image to decide the authority of these images by u
... Show MoreThe meniscus has a crucial function in human anatomy, and Magnetic Resonance Imaging (M.R.I.) plays an essential role in meniscus assessment. It is difficult to identify cartilage lesions using typical image processing approaches because the M.R.I. data is so diverse. An M.R.I. data sequence comprises numerous images, and the attributes area we are searching for may differ from each image in the series. Therefore, feature extraction gets more complicated, hence specifically, traditional image processing becomes very complex. In traditional image processing, a human tells a computer what should be there, but a deep learning (D.L.) algorithm extracts the features of what is already there automatically. The surface changes become valuable when
... Show Moreيعد التقطيع الصوري من الاهداف الرئيسة والضرورية في المعالجات الصورية للصور الرقمية، فهو يسعى الى تجزئة الصور المدروسة الى مناطق متعددة اكثر نفعاً تلخص فيها المناطق ذات الافادة لصور الاقمار الصناعية، وهي صور متعددة الاطياف ومجهزة من الاقمار الصناعية باستخدام مبدأ الاستشعار عن بعد والذي اصبح من المفاهيم المهمة التي تُعتمد تطبيقاته في اغلب ضروريات الحياة اليومية، وخاصة بعد التطورات المتسارعة التي شهد
... Show MoreA new features extraction approach is presented based on mathematical form the modify soil ratio (MSR) and skewness for numerous environmental studies. This approach is involved the investigate on the separation of features using frequency band combination by ratio to estimate the quantity of these features, and it is exhibited a particular aspect to determine the shape of features according to the position of brightness values in a digital scenes, especially when the utilizing the skewness. In this research, the marginal probability density function G(MSR) derivation for the MSR index is corrected, that mentioned in several sources including the source (Aim et al.). This index can be used on original input features space for three diffe
... Show MoreLaser scanning has become a popular technique for the acquisition of digital models in the field of cultural heritage conservation and restoration nowadays. Many archaeological sites were lost, damaged, or faded, rather than being passed on to future generations due to many natural or human risks. It is still a challenge to accurately produce the digital and physical model of the missing regions or parts of our cultural heritage objects and restore damaged artefacts. The typical manual restoration can become a tedious and error-prone process; also can cause secondary damage to the relics. Therefore, in this paper, the automatic digital application process of 3D laser modelling of arte