The virtual decomposition control (VDC) is an efficient tool suitable to deal with the full-dynamics-based control problem of complex robots. However, the regressor-based adaptive control used by VDC to control every subsystem and to estimate the unknown parameters demands specific knowledge about the system physics. Therefore, in this paper, we focus on reorganizing the equation of the VDC for a serial chain manipulator using the adaptive function approximation technique (FAT) without needing specific system physics. The dynamic matrices of the dynamic equation of every subsystem (e.g. link and joint) are approximated by orthogonal functions due to the minimum approximation errors produced. The control, the virtual stability of every subsystem and the stability of the entire robotic system are proved in this work. Then the computational complexity of the FAT is compared with the regressor-based approach. Despite the apparent advantage of the FAT in avoiding the regressor matrix, its computational complexity can result in difficulties in the implementation because of the representation of the dynamic matrices of the link subsystem by two large sparse matrices. In effect, the FAT-based adaptive VDC requires further work for improving the representation of the dynamic matrices of the target subsystem. Two case studies are simulated by Matlab/Simulink: a 2-R manipulator and a 6-DOF planar biped robot for verification purposes.
An efficient combination of Adomian Decomposition iterative technique coupled with Laplace transformation to solve non-linear Random Integro differential equation (NRIDE) is introduced in a novel way to get an accurate analytical solution. This technique is an elegant combination of theLaplace transform, and the Adomian polynomial. The suggested method will convert differential equations into iterative algebraic equations, thus reducing processing and analytical work. The technique solves the problem of calculating the Adomian polynomials. The method’s efficiency was investigated using some numerical instances, and the findings demonstrate that it is easier to use than many other numerical procedures. It has also been established that (LT
... Show More This study includes Estimating scale parameter, location parameter and reliability function for Extreme Value (EXV) distribution by two methods, namely: -
- Maximum Likelihood Method (MLE).
- Probability Weighted Moments Method (PWM).
Used simulations to generate the required samples to estimate the parameters and reliability function of different sizes(n=10,25,50,100) , and give real values for the parameters are and , replicate the simulation experiments (RP=1000)
... Show MoreAbstract:
One of the important things provided by fuzzy model is to identify the membership functions. In the fuzzy reliability applications with failure functions of the kind who cares that deals with positive variables .There are many types of membership functions studied by many researchers, including triangular membership function, trapezoidal membership function and bell-shaped membership function. In I research we used beta function. Based on this paper study classical method to obtain estimation fuzzy reliability function for both series and parallel systems.
In this research, several estimators concerning the estimation are introduced. These estimators are closely related to the hazard function by using one of the nonparametric methods namely the kernel function for censored data type with varying bandwidth and kernel boundary. Two types of bandwidth are used: local bandwidth and global bandwidth. Moreover, four types of boundary kernel are used namely: Rectangle, Epanechnikov, Biquadratic and Triquadratic and the proposed function was employed with all kernel functions. Two different simulation techniques are also used for two experiments to compare these estimators. In most of the cases, the results have proved that the local bandwidth is the best for all the
... Show MoreIn many applications such as production, planning, the decision maker is important in optimizing an objective function that has fuzzy ratio two functions which can be handed using fuzzy fractional programming problem technique. A special class of optimization technique named fuzzy fractional programming problem is considered in this work when the coefficients of objective function are fuzzy. New ranking function is proposed and used to convert the data of the fuzzy fractional programming problem from fuzzy number to crisp number so that the shortcoming when treating the original fuzzy problem can be avoided. Here a novel ranking function approach of ordinary fuzzy numbers is adopted for ranking of triangular fuzzy numbers with simpler an
... Show MoreMost of the medical datasets suffer from missing data, due to the expense of some tests or human faults while recording these tests. This issue affects the performance of the machine learning models because the values of some features will be missing. Therefore, there is a need for a specific type of methods for imputing these missing data. In this research, the salp swarm algorithm (SSA) is used for generating and imputing the missing values in the pain in my ass (also known Pima) Indian diabetes disease (PIDD) dataset, the proposed algorithm is called (ISSA). The obtained results showed that the classification performance of three different classifiers which are support vector machine (SVM), K-nearest neighbour (KNN), and Naïve B
... Show MoreThis paper presents a new algorithm in an important research field which is the semantic word similarity estimation. A new feature-based algorithm is proposed for measuring the word semantic similarity for the Arabic language. It is a highly systematic language where its words exhibit elegant and rigorous logic. The score of sematic similarity between two Arabic words is calculated as a function of their common and total taxonomical features. An Arabic knowledge source is employed for extracting the taxonomical features as a set of all concepts that subsumed the concepts containing the compared words. The previously developed Arabic word benchmark datasets are used for optimizing and evaluating the proposed algorithm. In this paper,
... Show MoreEarly detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze med
... Show More