The virtual decomposition control (VDC) is an efficient tool suitable to deal with the full-dynamics-based control problem of complex robots. However, the regressor-based adaptive control used by VDC to control every subsystem and to estimate the unknown parameters demands specific knowledge about the system physics. Therefore, in this paper, we focus on reorganizing the equation of the VDC for a serial chain manipulator using the adaptive function approximation technique (FAT) without needing specific system physics. The dynamic matrices of the dynamic equation of every subsystem (e.g. link and joint) are approximated by orthogonal functions due to the minimum approximation errors produced. The control, the virtual stability of every subsystem and the stability of the entire robotic system are proved in this work. Then the computational complexity of the FAT is compared with the regressor-based approach. Despite the apparent advantage of the FAT in avoiding the regressor matrix, its computational complexity can result in difficulties in the implementation because of the representation of the dynamic matrices of the link subsystem by two large sparse matrices. In effect, the FAT-based adaptive VDC requires further work for improving the representation of the dynamic matrices of the target subsystem. Two case studies are simulated by Matlab/Simulink: a 2-R manipulator and a 6-DOF planar biped robot for verification purposes.
This study investigated the application of the crystallization process for oilfield produced water from the East Baghdad oilfield affiliated to the Midland Oil Company (Iraq). Zero liquid discharge system (ZLD) consists of several parts such as oil skimming, coagulation/flocculation, forward osmosis, and crystallization, the crystallization process is a final part of a zero liquid discharge system. The laboratory-scale simple evaporation system was used to evaluate the performance of the crystallization process. In this work, sodium chloride solution and East Baghdad oilfield produced water were used as a feed solution with a concentration of 177 and 220 g/l. The impact of temperature (70, 80, and 90 °C), mixing speed (300, 400, and 500
... Show MoreSmart cities have recently undergone a fundamental evolution that has greatly increased their potentials. In reality, recent advances in the Internet of Things (IoT) have created new opportunities by solving a number of critical issues that are allowing innovations for smart cities as well as the creation and computerization of cutting-edge services and applications for the many city partners. In order to further the development of smart cities toward compelling sharing and connection, this study will explore the information innovation in smart cities in light of the Internet of Things (IoT) and cloud computing (CC). IoT data is first collected in the context of smart cities. The data that is gathered is uniform. The Internet of Things,
... Show MoreMany oil and gas processes, including oil recovery, oil transportation, and petroleum processing, are negatively impacted by the precipitation and deposition of asphaltene. Screening methods for determining the stability of asphaltenes in crude oil have been developed due to the high cost of remediating asphaltene deposition in crude oil production and processing. The colloidal instability index, the Asphaltene-resin ratio, the De Boer plot, and the modified colloidal instability index were used to predict the stability of asphaltene in crude oil in this study. The screening approaches were investigated in detail, as done for the experimental results obtained from them. The factors regulating the asphaltene precipitation are different fr
... Show MoreProblem: Cancer is regarded as one of the world's deadliest diseases. Machine learning and its new branch (deep learning) algorithms can facilitate the way of dealing with cancer, especially in the field of cancer prevention and detection. Traditional ways of analyzing cancer data have their limits, and cancer data is growing quickly. This makes it possible for deep learning to move forward with its powerful abilities to analyze and process cancer data. Aims: In the current study, a deep-learning medical support system for the prediction of lung cancer is presented. Methods: The study uses three different deep learning models (EfficientNetB3, ResNet50 and ResNet101) with the transfer learning concept. The three models are trained using a
... Show MoreThis study aims at identifying the extent of SMS usage and understanding the role it plays in satisfying users' needs and motivations. In order to achieve this aim, an analytical descriptive method was adopted by conducting a field survey among students at Petra University.
The study resulted in many conclusions, the most important of which is that using SMS meets the students' cognitive, social and communicational needs and desires, the highest being communicating with friends at 75%, followed by exchanging songs and videos at 52%, as well as exchanging photos at 45%. In regards to their motivation for using text messaging, forgetting daily problems scored highest at 81.4% and spending free time followed at 77.4%. This proves th
... Show MoreBuilding numerical reservoir simulation model with a view to model actual case requires enormous amount of data and information. Such modeling and simulation processes normally require lengthy time and different sets of field data and experimental tests that are usually very expensive. In addition, the availability, quality and accessibility of all necessary data are very limited, especially for the green field. The degree of complexities of such modelling increases significantly especially in the case of heterogeneous nature typically inherited in unconventional reservoirs. In this perspective, this study focuses on exploring the possibility of simplifying the numerical simulation pr