The main aim of this study is to assess the performance and residual strength of post-fire non-prismatic reinforced concrete beams (NPRC) with and without openings. To do this, nine beams were cast and divided into three major groupings. These groups were classified based on the degrees of heating exposure temperature chosen (ambient, 400, and 700°C), with each group containing three non-prismatic beams (solid, 8 trapezoidal openings, and 8 circular openings). Experimentally, given the same beam geometry, increasing burning temperature caused degradation in NPRC beams, which was reflected in increased mid-span deflection throughout the fire exposure period and also residual deflection after cooling. But on the other hand, the issue with existing openings was exacerbated. The burned NPRC beams were then gradually cooled down by leaving them at ambient temperature in the laboratory, and the beams were loaded until failure to examine the effect of burning temperature degree on the residual ultimate load-carrying capacity of each beam by comparing them to unburned reference beams. It was found, increasing the exposure temperature leads to a reduction in ultimate strength about (5.7 and 10.84%) for solid NPRC beams exposed to 400 and 700°C, respectively related to unburned one, (21.13 -32.8) % for NPRC beams with eight trapezoidal openings, and (10.5 - 12.8) % for those having 8 circular openings. At higher loading stage the longitudinal compressive strain of Group ambient in mid-span of solid beams reach 2700 με, while the others with openings exhibit divergent strain higher than that, it’s about 3300 με meanwhile, the lower chord main reinforcements have been pass beyond yielding stress. Exposure to high temperatures reduces rafters’ stiffness causing a reduction in load carrying capacity, companion with premature failure consequently reduce the strain at the ultimate stage.
This study conducted an analytical investigation on the behavior of concrete beams with openings reinforced by glass-fiber-reinforced polymer (GFRP) bars. In this study, five proposed beams reinforced by GFRP bars as flexural and shear reinforcement with openings were numerically examined. The variables were the opening orientation (vertical and horizontal) and the number of openings. These openings were located within the flexural zone of the proposed beams. The result shows that the vertical openings had a significant effect over the horizontal openings on reducing the ultimate load and increasing the mid-span deflection compared with the control beam. Moreover, the results showed t
This study aimed at evaluating the torsional capacity of reinforced concrete (RC) beams externally wrapped with fiber reinforced polymer (FRP) materials. An analytical model was described and used as a new computational procedure based on the softened truss model (STM) to predict the torsional behavior of RC beams strengthened with FRP. The proposed analytical model was validated with the existing experimental data for rectangular sections strengthened with FRP materials and considering torque-twist relationship and crack pattern at failure. The confined concrete behavior, in the case of FRP wrapping, was considered in the constitutive laws of concrete in the model. Then, an efficient algorithm was developed in MATLAB environment t
... Show MoreThis study conducted an analytical investigation on the behavior of concrete beams with openings reinforced by glass-fiber-reinforced polymer (GFRP) bars. In this study, five proposed beams reinforced by GFRP bars as flexural and shear reinforcement with openings were numerically examined. The variables were the opening orientation (vertical and horizontal) and the number of openings. These openings were located within the flexural zone of the proposed beams. The result shows that the vertical openings had a significant effect over the horizontal openings on reducing the ultimate load and increasing the mid-span deflection compared with the control beam. Moreover, the results showed t
The research seeks to identify the impact of fraud detection skills in the settlement of compensatory claims for the fire and accident insurance portfolio and the reflection of these skills in preventing and reducing the payment of undue compensation to some who seek profit and enrichment at the expense of the insurance contract. And compensatory claims in the portfolio of fire and accident insurance in the two research companies, which show the effect and positive return of the detection skills and settlement of the compensation on the amount of actual compensation against the claims inflated by some of the insured, The research sample consisted of (70) respondents from a community size (85) individuals between the director and assistan
... Show MoreBackground: Implant stability is a mandatory factor for dental implant (DI) osseointegration and long-term success. The aim of this study was to evaluate the effect of implant length, diameter, and recipient jaw on the pre- and post-functional loading stability. Materials and methods: This study included 17 healthy patients with an age range of 24-61 years. Twenty-two DI were inserted into healed extraction sockets to replace missing tooth/ teeth in premolar and molar regions in upper and lower jaws. Implant stability was measured for each implant and was recorded as implant stability quotient (ISQ) immediately (ISQ0), and at 8 (ISQ8) and 12 (ISQ12) weeks postoperatively, as well as post-functional loading (ISQPFL). The pattern of implant
... Show MoreThe main objective of this work was to adopt an environmentally friendly technology with enhanced results. The technology of magnetic water (MW) treatment system can be used in concrete mixture production instead of potable water (PW) to improve both workability and strength. Two types of concrete were adopted: normal concreter production with two grades 25 and 35 MPa and the self-compacted concrete (SCC) with 35 MPa grade. The concrete mixes containing MW instead of PW results showed that, for 25 MPa grade, an improvement in a compressive strength of 15.1, 14.8, and 10.2% was achieved for 7, 28, and 90 days, respectively. For 35 MPa grade, an improvement of 13.6, 11.5, and
The main objective of this work was to adopt an environmentally friendly technology with enhanced results. The technology of magnetic water (MW) treatment system can be used in concrete mixture production instead of potable water (PW) to improve both workability and strength. Two types of concrete were adopted: normal concreter production with two grades 25 and 35 MPa and the self-compacted concrete (SCC) with 35 MPa grade. The concrete mixes containing MW instead of PW results showed that, for 25 MPa grade, an improvement in a compressive strength of 15.1, 14.8, and 10.2% was achieved for 7, 28, and 90 days, respectively. For 35 MPa grade, an improvement of 13.6, 11.5, and
Variable selection is an essential and necessary task in the statistical modeling field. Several studies have triedto develop and standardize the process of variable selection, but it isdifficultto do so. The first question a researcher needs to ask himself/herself what are the most significant variables that should be used to describe a given dataset’s response. In thispaper, a new method for variable selection using Gibbs sampler techniqueshas beendeveloped.First, the model is defined, and the posterior distributions for all the parameters are derived.The new variable selection methodis tested usingfour simulation datasets. The new approachiscompared with some existingtechniques: Ordinary Least Squared (OLS), Least Absolute Shrinkage
... Show MoreMost studies on deep beams have been made with reinforced concrete deep beams, only a few studies investigate the response of prestressed deep beams, while, to the best of our knowledge, there is not a study that investigates the response of full scale (T-section) prestressed deep beams with large web openings. An experimental and numerical study was conducted in order to investigate the shear strength of ordinary reinforced and partially prestressed full scale (T-section) deep beams that contain large web openings in order to investigate the prestressing existence effects on the deep beam responses and to better understand the effects of prestressing locations and opening depth to beam depth ratio on the deep beam performance and b
... Show More