The artificial silk (Rayon) was produced from the fronds of date palms which was taken from date palm trees (type Al-Zahdi) from the Iraqi gardens. Two main parts of the frond, namely leaves and stalks were used in this study to produce rayon. The palm fronds were converted into a powder of 90-180 micrometers. Major steps were used to produce rayon; delignification, bleaching and finally dissolution. Modified organosolv method which uses organic solvent method was applied to remove high lignin content. Three variables were studied in the delignification process: temperature, the ratio of ethanol to water and digestion time. The results showed that the best percent of lignin removal was (97%) which occured at; digestion time (80 minutes), temperature (185oC) and the ratio of ethanol: water of 50: 50 wt/wt. Statistical experimental design type Central Composite Design (CCD) has been used to find a mathematical relationship between the variables and the remaining lignin percent as a dependent variable. The effect of using different catalysts in delignification process have been studied and found that the best catalyst is sodium hydroxide at the concentration (0.025) mole/L which gave the same percent removal of lignin (97%) but with low digestion time about 30 min. In the next step, the cellulose was dissolved using. NaOH with different concentrations (4%-12%) and the results showed that the optimum concentration of sodium hydroxide was 8% at temperature - 20oC. In order to improve cellulose dissolution, urea was added with proportion (6% NaOH + 4% urea). Finally, the cellulose was spinning with 10% H2SO4 to prepare rayon.
A
A new series of bases of Schiff (H2-H4) derived from phthalic anhydrideweresynthesized. These Schiff bases were prepared by the reaction of different amines (tyrosine methyl ester, phenylalanine methyl ester, and isoniazid) with the phthalimide derived aldehyde with the aid of glacial acetic acid or triethylamine ascatalysts. All the synthesized compounds were characterized by (FT-IR and 1HNMR) analyses and were in vitro evaluated for their antimicrobial activity against six various kinds of microorganisms. All the synthesized compounds had been screened for their antimicrobial activity against two Gram-positive bacteria “Staph. Aureus, and Bacillus subtilis
... Show MoreThe synthesis, characterization and liquid crystalline properties of N4,N40-bis((1 H-benzo[d]imidazol-2- yl)methyl)-3,30-dimethyl-[1,10-biphenyl]-4,40-diamine and of their corresponding Mn(II), Fe(II), Ni (II), Cu(II), and Zn(II) complexes are described. The ligand and complexes have been characterized by elemental analysis, magnetic susceptibility measurements (meff), conductometric measurements and Fourier Transform Infrared (FTIR), Nuclear Magnetic Resonance (1H NMR), (13C-NMR) and UV–Vis spectroscopy. Spectral investigations suggested octahedral coordination geometrical arrangement for M(II) complexes. The phase transition temperatures were detected by differential scanning calorimetry (DSC) analysis and the phases are confirmed by op
... Show MoreA new ligand N-(methylcarbamothioyl) acetamide (AMP) was synthesized by reaction of acetyl chloride with adenine. The ligand was characterized by FT-IR, NMR spectra and the elemental analysis. The transition metal complexes of this ligand where synthesize and characterized by UV-Visible spectra, FT-IR, magnetic suscepility, conductively measurement. The general formula [M(AMP)2Cl2], where M+2 = (Mn, Co, Ni, Cu, Zn, Cd, Hg).
Several new derivatives of 1, 2, 4-triazoles linked to phthalimide moiety were synthesized through following multisteps. The first step involved preparation of 2, 2-diphthalimidyl ethanoic acid [2] via reaction of two moles of phthalimide with dichloroacetic acid. Treatment of the resulted imide with ethanol in the second step afforded 2, 2-diphthalimidyl ester [3] which inturn was introduced in reaction with hydrazine hydrate in the third step, producing the corresponding hydrazide derivative [4]. The synthesized hydazide was introduced in different synthetic paths including treatment with carbon disulfide in alkaline solution then with hydrazine hydrate to afford the new 1, 2, 4-triazole [10]. Reaction of compound [10] with different alde
... Show MoreAn attempt to synthesize the benzoimidazol derivatives from the reaction of o-phenylenediamine and benzoic acid derivatives in the presence of ethanol and various ketones under microwave irradiation, 1 , 5 - benzodiazepinum salt derivatives were obtained instead of them. Unexpected reaction was happened for synthesis a new series of benzodiazepinium salt derivatives in a selective yield . The reaction mechanism was also discussed. The new compounds were purified and identified their structures were elucidated using various physical techniques like; FT- IR spectra, micro elemental analysis (C.H.N) and 1H NMR spectra.
The synthesis, characterization and liquid crystalline properties of N4,N40-bis((1 H-benzo[d]imidazol-2- yl)methyl)-3,30-dimethyl-[1,10-biphenyl]-4,40-diamine and of their corresponding Mn(II), Fe(II), Ni (II), Cu(II), and Zn(II) complexes are described. The ligand and complexes have been characterized by elemental analysis, magnetic susceptibility measurements (meff), conductometric measurements and Fourier Transform Infrared (FTIR), Nuclear Magnetic Resonance (1H NMR), (13C-NMR) and UV–Vis spectroscopy. Spectral investigations suggested octahedral coordination geometrical arrangement for M(II) complexes. The phase transition temperatures were detected by differential scanning calorimetry (DSC) analysis and the phases are confirmed by op
... Show MoreIn this present work, [4,4`-(biphenyl-4,4`-diylbis(azan-1-yl-1-ylidene))bis(methan-1-yl-1-ylidene)bis(2-methoxyphenl)(A1),4,4`-(biphenyl-4,4`-diylbis(azan-1-yl-1-ylidene))bis(methan-1-yl-1-ylidene)diphenol(A2),1,1`-(biphenyl-4,4`-diylbis(azan-1-yl-1-ylidene))bis(methan-1-yl-1-ylidene) dinaphthalen-2-ol (A3)]C.S was prepared in 3.5% NaCl. Corrosion prevention at (293-323) K has been studied by using electrochemical measurements. It shows that the utilized inhibitors are of mixed type based on the polarization curves. The results indicated that the inhibition efficiency changes were used with a change according to the functional groups on the benzene ring and through the electrochemical technique. Temperature increases with corrosion current
... Show MoreBy condensation of benzaldehyde with thiourea in absolute ethanol in the presence of glacial acetic acid as a catalyst, the Schiff base(1-benzylidenethiourea)[I] was synthesized by synthesis of 4-(3-benzylidenethioureido)-4-thioxobut-2-enoic acid compound[II] by reaction of maleic anhydride with schiff base [I] in DMF. When treating compound [II] with ammonium persulfate (NH4)2S2O8 (APS) as an ethanol initiator to obtain polymer [III], compound [III] reacted to polymer [IV] with SOCl2 in benzene. Sulfamethizole, celecoxib, salbutamol, 4-aminoantipyrine to yield polymers [V-VIII], compound [IV] reaction with different drugs. Spectral evidence established the structure of synthesized co
The synthesis of nanoparticles (GNPs) from the reduction of HAuCl4 .3H2O by aluminum metal was obtained in aqueous solution with the use of Arabic gum as a stabilizing agent. The GNPs were characterized by TEM, AFM and Zeta potential spectroscopy. The reduction process was monitored over time by measuring ultraviolet spectra at a range of λ 520-525 nm. Also the color changes from yellow to ruby red, shape and size of GNP was studied by TEM. Shape was spherical and the size of particles was (12-17.5) nm. The best results were obtained at pH 6.
Nano-crystalline iron oxide nanoparticles (magnetite) was synthesized by open vessel ageing process. The iron chloride solution was prepared by mixing deionized water and iron chloride tetrahydrate. The product was characterized by X-Ray, Surface area and pore volume by Brunauer-Emmet-Teller, Atomic Force Microscope (AFM) and Fourier Transform Infrared Spectroscopy(FTIR) . The results showed that the XRD in compatibility of the prepared iron oxide (magnetite) with the general structure of standard iron oxide, and in Fourier Transform Infrared Spectroscopy, it is strong crests in 586 bands, because of the expansion vibration manner related to the metal oxygen absorption band (Fe–O bonds in the crystals of iron ox
... Show More