An Intelligent Internet of Things network based on an Artificial Intelligent System, can substantially control and reduce the congestion effects in the network. In this paper, an artificial intelligent system is proposed for eliminating the congestion effects in traffic load in an Intelligent Internet of Things network based on a deep learning Convolutional Recurrent Neural Network with a modified Element-wise Attention Gate. The invisible layer of the modified Element-wise Attention Gate structure has self-feedback to increase its long short-term memory. The artificial intelligent system is implemented for next step ahead traffic estimation and clustering the network. In the proposed architecture, each sensing node is adaptive and able to change its affiliation with other clusters based on a deep learning modified Element-wise Attention Gate. The modified Element-wise Attention Gate has the ability to handle the buffer capacity in all the network, thereby enriching the Quality of Service. A deep learning modified training algorithm is proposed to learn the artificial intelligent system allowing the neurons to have greater concentration ability. The simulation results demonstrate that the Root Mean Square error is minimized by 37.14% when using modified Element-wise Attention Gate when compared with a Deep Learning Recurrent Neural Network. Also, the Quality of Service of the network is improved, for example, the network lifetime is enhanced by 12.7% more than with Deep Learning Recurrent Neural Network.
A prey-predator interaction model has been suggested in which the population of a predator consists of a two-stage structure. Modified Holling's disk equation is used to describe the consumption of the prey so that it involves the additional source of food for the predator. The fear function is imposed on prey. It is supposed that the prey exhibits anti-predator behavior and may kill the adult predator due to their struggle against predation. The proposed model is investigated for existence, uniqueness, and boundedness. After determining all feasible equilibrium points, the local stability analyses are performed. In addition, global stability analyses for this model using the Lyapunov method are investigated. The chance of occurrence of loc
... Show MoreAn experimental study was carried out for an evaporative cooling system in order to investigate the effect of using an aluminum pad coated with fabric polyester. In the present work, it was considered to use a new different type of cooling medium and test its performance during the change in the wet-bulb temperature and dry-bulb temperature of the supply air outside of the pad, the relative humidity of the supply air, the amount of air supplied (300-600) CFM and also the change of the amount of circulated water (1.75, 2.5, 4.5) liter per minute. A decrease in the WBT of the air was obtained, whereas the WBT of the air entering the pad was 26.5 . In contrast, the WBT of the outside air had reached 23 even though eva
... Show MoreIn this study, the flexural performance of a new composite beam–slab system filled with concrete material was investigated, where this system was mainly prepared from lightweight cold-formed steel sections of a beam and a deck slab for carrying heavy floor loads as another concept of a conventional composite system with a lower cost impact. For this purpose, seven samples of a profile steel sheet–dry board deck slab (PSSDB/PDS) carried by a steel cold-formed C-purlins beam (CB) were prepared and named “composite CBPDS specimen”, which were tested under a static bending load. Specifically, the effects of the profile steel sheet (PSS) direction (parallel or perpendicular to the span of the specimen) using different C-purlins c
... Show MoreThis study focuses on improving the safety of embankment dams by considering the effects of vibration due to powerhouse operation on the dam body. The study contains two main parts. In the first part, ANSYS-CFX is used to create the three-dimensional (3D) Finite Volume (FV) model of one vertical Francis turbine unit. The 3D model is run by considering various reservoir conditions and the dimensions of units. The Re-Normalization Group (RNG) k-ε turbulence model is employed, and the physical properties of water and the flow characteristics are defined in the turbine model. In the second phases, a 3D finite element (FE) numerical model for a rock-fill dam is created by using ANSYS®, considering the dam connection with its powerhouse
... Show MoreThis study offers numerical simulation results using the ABAQUS/CAE version 2019 finite element computer application to examine the performance, and residual strength of eight recycle aggregate RC one-way slabs. Six strengthened by NSM CFRP plates were presented to study the impact of several parameters on their structural behavior. The experimental results of four selected slabs under monotonic load, plus one slab under repeated load, were validated numerically. Then the numerical analysis was extended to different parameters investigation, such as the impact of added CFRP length on ultimate load capacity and load-deflection response and the impact of concrete compressive strength value on the structural performance of
... Show MoreThe prostaglandins inside inflamed tissues are produced by cyclooxygenase-2 (COX-2), making it an important target for improving anti-inflammatory medications over a long period. Adverse effects have been related to the traditional usage of non-steroidal anti-inflammatory drugs (NSAIDs) for the treatment of inflammation, mainly centered around gastrointestinal (GI) complications. The current research involves the creation of a virtual library of innovative molecules showing similar drug properties via a structure-based drug design. A library that includes five novel derivatives of Diclofenac was designed. Subsequently, molecular docking through the Glide module and determining the binding free energy implementing the P
... Show MoreThe aim of this paper is to approximate multidimensional functions by using the type of Feedforward neural networks (FFNNs) which is called Greedy radial basis function neural networks (GRBFNNs). Also, we introduce a modification to the greedy algorithm which is used to train the greedy radial basis function neural networks. An error bound are introduced in Sobolev space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result is published in [16]).
In this paper we study and design two feed forward neural networks. The first approach uses radial basis function network and second approach uses wavelet basis function network to approximate the mapping from the input to the output space. The trained networks are then used in an conjugate gradient algorithm to estimate the output. These neural networks are then applied to solve differential equation. Results of applying these algorithms to several examples are presented
This paper proposes a new structure of the hybrid neural controller based on the identification model for nonlinear systems. The goal of this work is to employ the structure of the Modified Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Weight parameters of the hybrid neural structure with its serial-parallel configuration are adapted by using the Back propagation learning algorithm. The ability of the proposed hybrid neural structure for nonlinear system has achieved a fast learning with minimum number
... Show More