An Intelligent Internet of Things network based on an Artificial Intelligent System, can substantially control and reduce the congestion effects in the network. In this paper, an artificial intelligent system is proposed for eliminating the congestion effects in traffic load in an Intelligent Internet of Things network based on a deep learning Convolutional Recurrent Neural Network with a modified Element-wise Attention Gate. The invisible layer of the modified Element-wise Attention Gate structure has self-feedback to increase its long short-term memory. The artificial intelligent system is implemented for next step ahead traffic estimation and clustering the network. In the proposed architecture, each sensing node is adaptive and able to change its affiliation with other clusters based on a deep learning modified Element-wise Attention Gate. The modified Element-wise Attention Gate has the ability to handle the buffer capacity in all the network, thereby enriching the Quality of Service. A deep learning modified training algorithm is proposed to learn the artificial intelligent system allowing the neurons to have greater concentration ability. The simulation results demonstrate that the Root Mean Square error is minimized by 37.14% when using modified Element-wise Attention Gate when compared with a Deep Learning Recurrent Neural Network. Also, the Quality of Service of the network is improved, for example, the network lifetime is enhanced by 12.7% more than with Deep Learning Recurrent Neural Network.
The present study conducted on 30 female patients with osteoarthritis 0A a
attending Baghdad teaching hosp ital, in addition to 30 healthy females , all subjects
were ( 35-65) years old.
Some biochemical parameters were measured in the sera of patients and healthy
group s. The parameters were Glutathione (GSH). Ceruloplasmin (Cp) and some trace
elements ,including Copper (Cu) ,Cu/ Cp ratio and Selenium (Se) were determined . The
results revealed a significant reduction in all parameters of patients sera compared to
healthy group .
The reduction in GSH and Cu/Cp ratio confirms tissue damage associated with
oxidative stress injury
A conclusion was obtained hrer ,that Cu wasn’t an important ele
Four simply supported reinforced concrete (RC) beams were test experimentaly and analyzed using the extended finite element method (XFEM). This method is used to treat the discontinuities resulting from the fracture process and crack propagation in that occur in concrete. The Meso-Scale Approach (MSA) used to model concrete as a heterogenous material consists of a three-phasic material (coarse aggregate, mortar, and air voids in the cement paste). The coarse aggregate that was used in the casting of these beams rounded and crashed aggregate shape with maximum size of 20 mm. The compressive strength used in these beams is equal to 17 MPa and 34 MPa, respectively. These RC beams are designed to fail due to flexure when subjected to lo
... Show MoreThe aim for this research is to investigate the effect of inclusion of crack incidence into the 2D numerical model of the masonry units and bonding mortar on the behavior of unreinforced masonry walls supporting a loaded reinforced concrete slab. The finite element method was implemented for the modeling and analysis of unreinforced masonry walls. In this paper, ABAQUS, FE software with implicit solver was used to model and analyze unreinforced masonry walls which are subjected to a vertical load. Detailed Micro Modeling technique was used to model the masonry units, mortar and unit-mortar interface separately. It was found that considering potential pure tensional cracks located vertically in the middle of the mortar and units show
... Show MoreFlexure members such as reinforced concrete (RC) simply supported beams subjected to two-point loading were analyzed numerically. The Extended Finite Element Method (XFEM) was employed for the treatment the non-smooth h behaviour such as discontinuities and singularities. This method is a powerful technique used for the analysis of the fracture process and crack propagation in concrete. Concrete is a heterogeneous material that consists of coarse aggregate, cement mortar and air voids distributed in the cement paste. Numerical modeling of concrete comprises a two-scale model, using mesoscale and macroscale numerical models. The effectiveness and validity of the Meso-Scale Approach (MSA) in modeling of the reinforced concrete beams w
... Show MoreUntreated municipal solid waste (MSW) release onto land is prevalent in developing countries. To reduce the high levels of harmful components in polluted soils, a proper evaluation of heavy metal concentrations in Erbil's Kani Qrzhala dump between August 2021 and February 2022 is required. The purpose of this research was to examine the impact of improper solid waste disposal on soil properties within a landfill by assessing the risks of contamination for eight heavy elements in two separate layers of the soil by using geoaccumulation index (I-geo) and pollution load index (PLI) supported. The ArcGIS software was employed to map the spatial distribution of heavy element pollution and potential ecological risks. The I-geo values in summe
... Show MoreThe analysis of rigid pavements is a complex mission for many reasons. First, the loading conditions include the repetition of parts of the applied loads (cyclic loads), which produce fatigue in the pavement materials. Additionally, the climatic conditions reveal an important role in the performance of the pavement since the expansion or contraction induced by temperature differences may significantly change the supporting conditions of the pavement. There is an extra difficulty because the pavement structure is made of completely different materials, such as concrete, steel, and soil, with problems related to their interfaces like contact or friction. Because of the problem's difficulty, the finite element simulation is
... Show More