An Intelligent Internet of Things network based on an Artificial Intelligent System, can substantially control and reduce the congestion effects in the network. In this paper, an artificial intelligent system is proposed for eliminating the congestion effects in traffic load in an Intelligent Internet of Things network based on a deep learning Convolutional Recurrent Neural Network with a modified Element-wise Attention Gate. The invisible layer of the modified Element-wise Attention Gate structure has self-feedback to increase its long short-term memory. The artificial intelligent system is implemented for next step ahead traffic estimation and clustering the network. In the proposed architecture, each sensing node is adaptive and able to change its affiliation with other clusters based on a deep learning modified Element-wise Attention Gate. The modified Element-wise Attention Gate has the ability to handle the buffer capacity in all the network, thereby enriching the Quality of Service. A deep learning modified training algorithm is proposed to learn the artificial intelligent system allowing the neurons to have greater concentration ability. The simulation results demonstrate that the Root Mean Square error is minimized by 37.14% when using modified Element-wise Attention Gate when compared with a Deep Learning Recurrent Neural Network. Also, the Quality of Service of the network is improved, for example, the network lifetime is enhanced by 12.7% more than with Deep Learning Recurrent Neural Network.
Sodium adsorption ratio (SAR) is considered as a measure of the water suitability for irrigation usage. This study examines the effect of the physicochemical parameters on water quality and SAR, which included Calcium(Ca+2), Magnesium(Mg+2), Sodium (Na+), Potassium (K), Chloride (Cl-), Sulfate(SO4-2), Carbonate (CO3-2), Bicarbonate (HCO3-), Nitrate (NO3-), Total Hardness (TH), Total Dissolved Salts (TDS), Electrical Conductivity (EC), degree of reaction (DR), Boron (B) and the monthly and annually flow discharge (Q). The water samples were collected from three stations across the Tigris River in Iraq, which flows through Samarra city (upstream), Baghdad city (central) and the end of Kut city (downstream) for the periods of 2016-201
... Show MoreThe importance of Baghdad city as the capital of Iraq and the center of the attention of delegations because of its long history is essential to preserve its environment. This is achieved through the integrated management of municipal solid waste since this is only possible by knowing the quantities produced by the population on a daily basis. This study focused to predicate the amount of municipal solid waste generated in Karkh and Rusafa separately, in addition to the quantity produced in Baghdad, using IBM SPSS 23 software. Results that showed the average generation rates of domestic solid waste in Rusafa side was higher than that of Al-Karkh side because Rusafa side has higher population density than Al-Karkh side. T
... Show MoreVarious theories have been proposed since in last century to predict the first sighting of a new crescent moon. None of them uses the concept of machine and deep learning to process, interpret and simulate patterns hidden in databases. Many of these theories use interpolation and extrapolation techniques to identify sighting regions through such data. In this study, a pattern recognizer artificial neural network was trained to distinguish between visibility regions. Essential parameters of crescent moon sighting were collected from moon sight datasets and used to build an intelligent system of pattern recognition to predict the crescent sight conditions. The proposed ANN learned the datasets with an accuracy of more than 72% in comp
... Show MoreSewer systems are used to convey sewage and/or storm water to sewage treatment plants for disposal by a network of buried sewer pipes, gutters, manholes and pits. Unfortunately, the sewer pipe deteriorates with time leading to the collapsing of the pipe with traffic disruption or clogging of the pipe causing flooding and environmental pollution. Thus, the management and maintenance of the buried pipes are important tasks that require information about the changes of the current and future sewer pipes conditions. In this research, the study was carried on in Baghdad, Iraq and two deteriorations model's multinomial logistic regression and neural network deterioration model NNDM are used to predict sewers future conditions. The results of the
... Show MorePurpose: Determining and identifying the relationships of smart strategic education systems and their potential effects on sustainable success in managing clouding electronic business networks according to green, economic and environmental logic based on vigilance and awareness of the strategic mind.
Design: Designing a hypothetical model that reveals the role and investigating audit and cloud electronic governance according to a philosophy that highlights smart strategic learning processes, identifying its assumptions in cloud spaces, choosing its tools, what it costs to devise expert minds, and strategic intelligence.
Methodology:
The dynamic development of computer and software technology in recent years was accompanied by the expansion and widespread implementation of artificial intelligence (AI) based methods in many aspects of human life. A prominent field where rapid progress was observed are high‐throughput methods in biology that generate big amounts of data that need to be processed and analyzed. Therefore, AI methods are more and more applied in the biomedical field, among others for RNA‐protein binding sites prediction, DNA sequence function prediction, protein‐protein interaction prediction, or biomedical image classification. Stem cells are widely used in biomedical research, e.g., leukemia or other disease studies. Our proposed approach of
... Show MoreIn this paper, a handwritten digit classification system is proposed based on the Discrete Wavelet Transform and Spike Neural Network. The system consists of three stages. The first stage is for preprocessing the data and the second stage is for feature extraction, which is based on Discrete Wavelet Transform (DWT). The third stage is for classification and is based on a Spiking Neural Network (SNN). To evaluate the system, two standard databases are used: the MADBase database and the MNIST database. The proposed system achieved a high classification accuracy rate with 99.1% for the MADBase database and 99.9% for the MNIST database
The economy is exceptionally reliant on agricultural productivity. Therefore, in domain of agriculture, plant infection discovery is a vital job because it gives promising advance towards the development of agricultural production. In this work, a framework for potato diseases classification based on feed foreword neural network is proposed. The objective of this work is presenting a system that can detect and classify four kinds of potato tubers diseases; black dot, common scab, potato virus Y and early blight based on their images. The presented PDCNN framework comprises three levels: the pre-processing is first level, which is based on K-means clustering algorithm to detect the infected area from potato image. The s
... Show More