An Intelligent Internet of Things network based on an Artificial Intelligent System, can substantially control and reduce the congestion effects in the network. In this paper, an artificial intelligent system is proposed for eliminating the congestion effects in traffic load in an Intelligent Internet of Things network based on a deep learning Convolutional Recurrent Neural Network with a modified Element-wise Attention Gate. The invisible layer of the modified Element-wise Attention Gate structure has self-feedback to increase its long short-term memory. The artificial intelligent system is implemented for next step ahead traffic estimation and clustering the network. In the proposed architecture, each sensing node is adaptive and able to change its affiliation with other clusters based on a deep learning modified Element-wise Attention Gate. The modified Element-wise Attention Gate has the ability to handle the buffer capacity in all the network, thereby enriching the Quality of Service. A deep learning modified training algorithm is proposed to learn the artificial intelligent system allowing the neurons to have greater concentration ability. The simulation results demonstrate that the Root Mean Square error is minimized by 37.14% when using modified Element-wise Attention Gate when compared with a Deep Learning Recurrent Neural Network. Also, the Quality of Service of the network is improved, for example, the network lifetime is enhanced by 12.7% more than with Deep Learning Recurrent Neural Network.
Asset management involves efficient planning of economic and technical performance characteristics of infrastructure systems. Managing a sewer network requires various types of activities so the network can be able to achieve a certain level of performance. During the lifetime of the network various components will start to deteriorate leading to bad performance and can damage the infrastructure. The main objective of this research is to develop deterioration models to provide an assessment tool for determining the serviceability of the sewer networks in Baghdad city the Zeppelin line was selected as a case study, as well as to give top management authorities the appropriate decision making. Different modeling techniques
... Show MoreRecommendation systems are now being used to address the problem of excess information in several sectors such as entertainment, social networking, and e-commerce. Although conventional methods to recommendation systems have achieved significant success in providing item suggestions, they still face many challenges, including the cold start problem and data sparsity. Numerous recommendation models have been created in order to address these difficulties. Nevertheless, including user or item-specific information has the potential to enhance the performance of recommendations. The ConvFM model is a novel convolutional neural network architecture that combines the capabilities of deep learning for feature extraction with the effectiveness o
... Show MoreA Multiple System Biometric System Based on ECG Data
The present study aims to study the content and spatial distribution of lead (Pb) contamination in the soils of some Baghdad cities (Middle of Iraq). Twenty soil samples were randomly collected from different land-use in the studied area at a depth between 5 to 30 cm. Ten samples are collected from Al-Rissafa side areas (Adhamiya, Al-Wazeeria (Battery Manufacturer), Shikh Omer, Ziyouna, Karada, Shaab, Sadr city, Al-Za’franiya, Al-Dora expressway, and Alselikh ) and other ten samples are collected from Al-Krakh side areas Al-Dora, Al-Masafi junction, Al-Dora, Sayidia, Al-Salam university college, Al-Bayaa (Industrial District), Jehad, Amirya, Abu Ghraib, Al-hurriya, and Kadhimiya. The soil samples have been analyzed for the lead (P
... Show MoreThis paper is concerned with finding solutions to free-boundary inverse coefficient problems. Mathematically, we handle a one-dimensional non-homogeneous heat equation subject to initial and boundary conditions as well as non-localized integral observations of zeroth and first-order heat momentum. The direct problem is solved for the temperature distribution and the non-localized integral measurements using the Crank–Nicolson finite difference method. The inverse problem is solved by simultaneously finding the temperature distribution, the time-dependent free-boundary function indicating the location of the moving interface, and the time-wise thermal diffusivity or advection velocities. We reformulate the inverse problem as a non-
... Show MoreIn this paper, the human robotic leg which can be represented mathematically by single input-single output (SISO) nonlinear differential model with one degree of freedom, is analyzed and then a simple hybrid neural fuzzy controller is designed to improve the performance of this human robotic leg model. This controller consists from SISO fuzzy proportional derivative (FPD) controller with nine rules summing with single node neural integral derivative (NID) controller with nonlinear function. The Matlab simulation results for nonlinear robotic leg model with the suggested controller showed that the efficiency of this controller when compared with the results of the leg model that is controlled by PI+2D, PD+NID, and F
... Show MoreWith the increasing integration of computers and smartphones into our daily lives, in addition to the numerous benefits it offers over traditional paper-based methods of conducting affairs, it has become necessary to incorporate one of the most essential facilities into this integration; namely: colleges. The traditional approach for conducting affairs in colleges is mostly paper-based, which only increases time and workload and is relatively decentralized. This project provides educational and management services for the university environment, targeting the staff, the student body, and the lecturers, on two of the most used platforms: smartphones and reliable web applications by clo
Computer models are used in the study of electrocardiography to provide insight into physiological phenomena that are difficult to measure in the lab or in a clinical environment.
The electrocardiogram is an important tool for the clinician in that it changes characteristically in a number of pathological conditions. Many illnesses can be detected by this measurement. By simulating the electrical activity of the heart one obtains a quantitative relationship between the electrocardiogram and different anomalies.
Because of the inhomogeneous fibrous structure of the heart and the irregular geometries of the body, finite element method is used for studying the electrical properties of the heart.
This work describes t
... Show MoreIn order to improve the effectiveness, increase the life cycle, and avoid the blade structural failure of wind turbines, the blades need to be perfectly designed. Knowing the flow angle and the geometric characteristics of the blade is necessary to calculate the values of the induction factors (axial and tangential), which are the basis of the Blade Element Momentum theory (BEM). The aforementioned equations form an implicit and nonlinear system. Consequently, a straightforward iterative solution process can be used to solve this problem. A theoretical study of the aerodynamic performance of a horizontal-axis wind turbine blade was introduced using the BEM. The main objective of the current work is to examine the wind turbine blade’s perf
... Show MoreTo determine the relationship between Helicobacter pylori infection and reproduction disorder (recurrent spontaneous abortion), twenty women patients who undergo spontaneous abortion during first trimester of pregnancy (20-38) years and have been investigated from 2015/12/1 -2016/3/1 and compared to fifteen healthy individuals. All subjects were carried out to measure anti-H. pylori IgA and anti- H. pylori IgG antibodies by enzyme linked immunosorbent assay (ELISA). There was significant elevation (p≤ 0.05) in concentration of anti- H. pylori IgG Abs (6.30± 0.99) compared to control group (4.48± 0.61) and IgA Abs (5.42 ± 0.90 U /ml) as compared to control group (3.92 ± 0.41 U/ml). The percentage of H. pylori IgG and IgA was 20% and 25
... Show More