An Intelligent Internet of Things network based on an Artificial Intelligent System, can substantially control and reduce the congestion effects in the network. In this paper, an artificial intelligent system is proposed for eliminating the congestion effects in traffic load in an Intelligent Internet of Things network based on a deep learning Convolutional Recurrent Neural Network with a modified Element-wise Attention Gate. The invisible layer of the modified Element-wise Attention Gate structure has self-feedback to increase its long short-term memory. The artificial intelligent system is implemented for next step ahead traffic estimation and clustering the network. In the proposed architecture, each sensing node is adaptive and able to change its affiliation with other clusters based on a deep learning modified Element-wise Attention Gate. The modified Element-wise Attention Gate has the ability to handle the buffer capacity in all the network, thereby enriching the Quality of Service. A deep learning modified training algorithm is proposed to learn the artificial intelligent system allowing the neurons to have greater concentration ability. The simulation results demonstrate that the Root Mean Square error is minimized by 37.14% when using modified Element-wise Attention Gate when compared with a Deep Learning Recurrent Neural Network. Also, the Quality of Service of the network is improved, for example, the network lifetime is enhanced by 12.7% more than with Deep Learning Recurrent Neural Network.
Congenital adrenal hyperplasia is a group of autosomal recessive disorders. The most frequent one is 21-hydroxylase deficiency. Analyzing
This work reports the development of an analytical method for the simultaneous analysis of three fluoroquinolones; ciprofloxacin (CIP), norfloxacin (NOR) and ofloxacin (OFL) in soil matrix. The proposed method was performed by using microwave-assisted extraction (MAE), solid-phase extraction (SPE) for samples purification, and finally the pre-concentrated samples were analyzed by HPLC detector. In this study, various organic solvents were tested to extract the test compounds, and the extraction performance was evaluated by testing various parameters including extraction solvent, solvent volume, extraction time, temperature and number of the extraction cycles. The current method showed a good linearity over the concentration ranging from
... Show MoreDuring the last few years, the greener additives prepared from bio-raw materials with low-cost and multifunctional applications have attracted considerable attention in the field of lubricant industry. In the present work, copolymers derived from sunflower and linseed oils with decyl methacrylate were synthesized by a thermal method using benzoyl peroxide (BPO) as a radical initiator. Direct polymerization of fatty acid double bonds in the presence of a free radical initiator results in the development of environmentally friendly copolymeric additives (Co-1 and Co-2). Fourier Transform Infrared (FTIR) and Proton Nuclear Magnetic Resonance (1H-NMR) were used to characterize the resulting copolymers. Thermal decomposition of copolymers was de
... Show MoreObjective Thalassemic patients present with multiple immune abnormalities that may predispose them to oral Candida, however this has not been investigated. The aim of this study was to assess oral candidal colonization in a group of patients with β-thalassemia major both qualitatively and quantitatively. Study design The oral mycologic flora of 50 β-thalassemia major patients and 50 age- and sex-matched control subjects was assessed using the concentrated oral rinse technique. Candida species were identified using the germ tube test and the Vitek yeast identification system. Results Oral Candida was isolated from 37 patients (74%) and 28 healthy subjects (56%; P = .04). The mean candidal count was significantly higher in thalassemic patie
... Show MoreA hand gesture recognition system provides a robust and innovative solution to nonverbal communication through human–computer interaction. Deep learning models have excellent potential for usage in recognition applications. To overcome related issues, most previous studies have proposed new model architectures or have fine-tuned pre-trained models. Furthermore, these studies relied on one standard dataset for both training and testing. Thus, the accuracy of these studies is reasonable. Unlike these works, the current study investigates two deep learning models with intermediate layers to recognize static hand gesture images. Both models were tested on different datasets, adjusted to suit the dataset, and then trained under different m
... Show MoreThe basic analytical formula for particle-hole state densities is derived based on the non-Equidistant Spacing Model (non-ESM) for the single-particle level density (s.p.l.d.) dependence on particle excitation energy u. Two methods are illustrated in this work, the first depends on Taylor series expansion of the s.p.l.d. about u, while the second uses direct analytical derivation of the state density formula. This treatment is applied for a system composing from one kind of fermions and for uncorrected physical system. The important corrections due to Pauli blocking was added to the present formula. Analytical comparisons with the standard formulae for ESM are made and it is shown that the solution reduces to earlier formulae providing m
... Show MoreBackground: Patients who have both neurological impairment and kyphotic deformity can be treated medically, and this treatment can be achieved with anti-tuberculous drugs alone.
Objective: To evaluate conservative medical management of patients with tuberculosis of the spine (Pott disease). The prognostic significance of various clinical, radiological, and long-term follow-up findings in these patients was also evaluated.
Methods: Between January 2009 and January 2018 data were collected prospectively at The Neurosciences Hospital/ Baghdad/ Iraq in 44 patients with Pott disease in the thoracic and lumbar spine. These patients had no major neurological deficits or
... Show More