Abstract. Shock chlorination is a well-known practice in swimming pools and domestic wells. One of the limitations for using this technique in drinking water purification facilities is the difficulty of quickly removing high chlorine concentrations in water distribution systems or production facilities. In order to use this method in the drinking water industry a shock de-chlorination method should be introduced for producing microorganism and biocide free water. De-chlorination using natural stagnant aeration (leaving the water to lose the chlorine naturally) is the safest known method if compared with chemical and charcoaling methods. Unfortunately, stagnant aeration is a slow process. Therefore, developing a process for accelerating de-chlorination by aeration would pave the way for using shock de-chlorination in drinking water industry. Forced air bubbling is a possible technique for de-chlorination but there is lack of data supporting such a process. The theory is that air bubbling has the advantages of higher mass transfer area, higher Reynolds number across the bubble water interface, and higher mass transfer concentration gradient as the bubbling presents a continuous stream of fresh bubbles. All of these factors accelerate aeration to various extents. A 20 cm diameter, 1-meter height column provided with air sparger was designed to collect the desired data used in this study. Trichloroisocyanuric acid, sodium hypochlorite and chlorine gas were the three familiar sources of chlorine used to investigate their response to air bubbling. Chlorine gas was the fastest and safest chlorine source to be dechlorinated. It dropped from 200 ppm to 0.02 ppm within 4 minutes or zero ppm within 6 minutes using an air flowrate of 9 l/min. Sodium hypochlorite decreased from 200 ppm to 0.02 ppm within 6 minutes using air flowrate of 9 l/min. Trichloroisocyanuric acid found to be the chlorine source slowest to respond to de-chlorination. It decreased from 200 ppm to 0.02 ppm within 8 minutes using an air flowrate of 9 l/min. Shock de-chlorination by aeration is found to be a promising method that opens up the drinking water industry and could produce microorganism and biocide free drinking water.
We describe the synthesis and characterization of a novel 2D-MnOx material using a combination of HR-TEM, XAS, XRD, and reactivity measurements. The ease with which the 2D material can be made and the conditions under which it can be made implies that water oxidation catalysts previously described as “birnessite-like” (3D) may be better thought of as 2D materials with very limited layer stacking. The distinction between the materials as being “birnessite-like” and “2D” is important because it impacts on our understanding of the function of these materials in the environment and as catalysts. The 2D-MnOx material is noted to be a substantially stronger chemical oxidant than previously noted for other birnessite-like manganese oxi
... Show MoreA design for a photovoltaic-thermal (PVT) assembly with a water-cooled heat sink was planned, constructed, and experimentally evaluated in the climatic conditions of the southern region of Iraq during the summertime. The water-cooled heat sink was applied to thermally manage the PV cells, in order to boost the electrical output of the PVT system. A set of temperature sensors was installed to monitor the water intake, exit, and cell temperatures. The climatic parameters including the wind velocity, atmospheric pressure, and solar irradiation were also monitored on a daily basis. The effects of solar irradiation on the average PV temperature, electrical power, and overall electrical-thermal efficiency were investigated. The findings i
... Show MoreThis paper aims to evaluate large-scale water treatment plants’ performance and demonstrate that it can produce high-level effluent water. Raw water and treated water parameters of a large monitoring databank from 2016 to 2019, from eight water treatment plants located at different parts in Baghdad city, were analyzed using nonparametric and multivariate statistical tools such as principal component analysis (PCA) and hierarchical cluster analysis (HCA). The plants are Al-Karkh, Sharq-Dijlah, Al-Wathba, Al-Qadisiya Al-Karama, Al-Dora, Al-Rasheed, Al-Wehda. PCA extracted six factors as the most significant water quality parameters that can be used to evaluate the variation in drinkin
After restoration of Iraqi marshes during 2003, three locations were chosen, one in each main marsh (Um Al-Naaj site in Al-Hwaizeh marsh; Al-Nagarah site in Al-Hammar marsh and Al-Baghdadia site in Al-Chebaysh marsh) to determine the concentrations of nutrients (Nitrate, Nitrite, Phosphate and Silicate) in water seasonally for the period winter, spring, summer, and autumn at 2007. Five water replicates were collected from each site, seasonally. In the Lab., the samples were analyzed by colorimetric methods; the results showed that Um-Al-Naaj site has the highest nutrients level, while Al-Nagarah site has the lowest level. The statistical program t-test was applied at the significant levels (P-value < 0.01) and (P-value < 0.05) to know
... Show MoreMonitoring the river’s water quality is important to predict the environmental risk. The Tigris River is Baghdad’s main source for living organisms, drinking water, and agro-industrial purposes. Three selected sites were carried out using different water quality parameters from July 2017 to April 2018 in the Tigris River in Baghdad. Fourteen water quality parameters: water temperatures, turbidity, electrical conductivity, pH, calcium, magnesium, chloride, sulfate, phosphate, dissolved oxygen (DO), alkalinity, total hardness, total dissolved substances TDS, and biological oxygen demand (BOD5). According to CCME WQI analysis, the water quality of Tigris River water was Fair for aqua
Jet grouting is one of the most widely applied soil improvement techniques. It is suitable for most geotechnical problems, including improving bearing capacity, decreasing settlement, forming seals, and stabilizing slopes. One of the difficulties faced by designers is determining the strength and geometry of elements created using this method. Jet grouted soil-cement columns in soil are a complicated issue because they are dependent on a number of parameters such as soil type, grout and water flow rate, rotation and lifting speed of monitor, nozzle jetting force, and water to cement ratio of slurry. This paper discusses the effect of the water-cement ratio on the physical and mechanical characteristics of soilcrete. In t
... Show MoreCrop production is reduced by insufficient and/or excess soil water, which can significantly decrease plant growth and development. Therefore, conservation management practices such as cover crops (CCs) are used to optimize soil water dynamics, since CCs can conserve soil water. The objective of this study was to determine the effects of CCs on soil water dynamics on a corn (
The water injection of the most important technologies to increase oil production from petroleum reservoirs. In this research, we developed a model for oil tank using the software RUBIS for reservoir simulation. This model was used to make comparison in the production of oil and the reservoir pressure for two case studies where the water was not injected in the first case study but adding new vertical wells while, later, it was injected in the second case study. It represents the results of this work that if the water is not injected, the reservoir model that has been upgraded can produce only 2.9% of the original oil in the tank. This case study also represents a drop in reservoir pressure, which was not enough to support oil production
... Show MoreDrip irrigation is one of the conservative irrigation techniques since it implies supplying water directly on the soil through the emitter; it can supply water and fertilizer directly into the root zone. An equation to estimate the wetted area in unsaturated soil is taking into calculating the water absorption by roots is simulated numerically using HYDRUS (2D/3D) software. In this paper, HYDRUS comprises analytical types of the estimate of different soil hydraulic properties. Used one soil type, sandy loam, with three types of crops; (corn, tomato, and sweet sorghum), different drip discharge, different initial soil moisture content was assumed, and different time durations. The relative error for the different hydrauli
... Show More