The recent emergence of sophisticated Large Language Models (LLMs) such as GPT-4, Bard, and Bing has revolutionized the domain of scientific inquiry, particularly in the realm of large pre-trained vision-language models. This pivotal transformation is driving new frontiers in various fields, including image processing and digital media verification. In the heart of this evolution, our research focuses on the rapidly growing area of image authenticity verification, a field gaining immense relevance in the digital era. The study is specifically geared towards addressing the emerging challenge of distinguishing between authentic images and deep fakes – a task that has become critically important in a world increasingly reliant on digital med
... Show MoreData mining has the most important role in healthcare for discovering hidden relationships in big datasets, especially in breast cancer diagnostics, which is the most popular cause of death in the world. In this paper two algorithms are applied that are decision tree and K-Nearest Neighbour for diagnosing Breast Cancer Grad in order to reduce its risk on patients. In decision tree with feature selection, the Gini index gives an accuracy of %87.83, while with entropy, the feature selection gives an accuracy of %86.77. In both cases, Age appeared as the most effective parameter, particularly when Age<49.5. Whereas Ki67 appeared as a second effective parameter. Furthermore, K- Nearest Neighbor is based on the minimu
... Show MoreWith the rapid development of computers and network technologies, the security of information in the internet becomes compromise and many threats may affect the integrity of such information. Many researches are focused theirs works on providing solution to this threat. Machine learning and data mining are widely used in anomaly-detection schemes to decide whether or not a malicious activity is taking place on a network. In this paper a hierarchical classification for anomaly based intrusion detection system is proposed. Two levels of features selection and classification are used. In the first level, the global feature vector for detection the basic attacks (DoS, U2R, R2L and Probe) is selected. In the second level, four local feature vect
... Show MoreEimeriosis is a major problem affecting ruminants worldwide. The disease is primarily caused by Eimeria species, which are specialized for each host and grow in the small and large intestine of animals. The losses due to subclinical infections (especially weight loss) and clinical disease (diarrhea) make the species of this genus a very significant economic concern. Therefore, this study was conducted in some areas of Wasit Province. A total of 180 fecal samples from goats, of both sexes and covering different age groups and months, were collected. All fecal samples were examined microscopically, and 75 positive fecal samples were taken for molecular examination and further analyzed using conventional PCR, sequencing and phylogeneti
... Show MoreThe fast evolution of cyberattacks in the Internet of Things (IoT) area, presents new security challenges concerning Zero Day (ZD) attacks, due to the growth of both numbers and the diversity of new cyberattacks. Furthermore, Intrusion Detection System (IDSs) relying on a dataset of historical or signature‐based datasets often perform poorly in ZD detection. A new technique for detecting zero‐day (ZD) attacks in IoT‐based Conventional Spiking Neural Networks (CSNN), termed ZD‐CSNN, is proposed. The model comprises three key levels: (1) Data Pre‐processing, in this level a thorough cleaning process is applied to the CIC IoT Dataset 2023, which contains both malicious and t
Yersinia enterocolitica has ranked a third among the pathogens that most frequently cause gastrointestinal disorders transmitted to humans through food materials, especially contaminated meats. The meat infected with Yersinia enterocolitica had no change in apparent texture or smell. The aim of this research is to survey the frequency of Y. enterocolitica in ovine meat, compare their ratio of infection between the season, To carry out this study (125) samples of local ovine meat were collected by random sampling from the middle region of Iraq. The samples were divided into two groups steak and mince, then many microbiological tests (culture, & staining, biochemical Tests Api 20E, Vitik 2 and species-specific PCR amplicon for 16S RNA gene) w
... Show MoreA study of the Torymid collection of Iraq. resulted in undescribed species of the genus
Liodontonierus Gah. L. longicorpus sp. n. with 2 figures.
This study aims to identify the concepts of financial crisis and its reasons of creation , also explain the effects of the accounting disclosure and the International Accounting Standards in current financial crisis, In addition to, indicate the role of accounting in the reform of the financial system from the impact of financial crisis.
The methodology of this study orientied to two main aspects, the first is an identifying approach through exploring the opinion of financial experts, the second aspect is based on an analytical approach to satisfy the requirements of experts to get there opi
... Show MoreIn this paper, the species of the genus of Chlaenius Bonelli, 1810 (Coleoptera, Carabidae) were reviewed, and it was revealed that there are 21 confirmed species in Iraq; among them, the species of Chlaenius hamifer Chaudoir, 1856 was recorded for the first time in Iraq.
Diagnostic characters, a redescription of some of the morphological features, photographs and illustrations are provided for the new record species in this investigation.