Isatin (1H-indole-2, 3-dione) and its analogs are an important class of heterocyclic compounds. N-benzyl isatins and Schiff bases of isatin analogs have been reported to demonstrate a variety of biological activities. This work illustrates the synthesis of new N-benzylisatin Schiff bases and studies their biological activity. Firstly, Isatin and its analogs; 5-methoxyisatin, 5-fluoroisatin reacted with benzyl iodide to obtain N-benzylated derivatives of isatins 2 (ac). Secondly, these compounds were reacted with different amines (sulphanilamide and 4-methyl sulphonyl aniline) separately, to obtain Schiff bases compounds 3 (ac) and 4 (ac), respectively. The synthesized compounds were characterized by using FT-IR and 1HNMR spectroscopy. The synthesized Schiff bases 3 (ac) and 4 (ac) were examined for their in vitro antimicrobial activity using different Gram-positive bacteria, Gram-negative bacteria, and Candida albicans as fungi. The obtained results were compared with standard drugs: amoxicillin, ciprofloxacin, and fluconazole. All the compounds show no antifungal activity at any concentrations used, while most of them show moderate antibacterial activity at concentration 5mg/mL toward most bacteria except Klebsiella pneumonia.
The thermal method was used to produce silicoaluminophosphate (SAPO-11) with different amounts of carbon nanotubes (CNT). XRD, nitrogen adsorption-desorption, SEM, AFM, and FTIR were used to characterize the prepared catalyst. It was discovered that adding CNT increased the crystallinity of the synthesize SAPO-11 at all the temperatures which studied, wile the maximum surface area was 179.54 m2/g obtained at 190°C with 7.5 percent of CNT with a pore volume of 0.317 cm3/g ,and with nano-particles with average particle diameter of 24.8 nm, while the final molar composition of the prepared SAPO-11 was (Al2O3:0.93P2O5:0.414SiO2).
2(2-Tetrahydropyranylthio) methyl cyclopropyl amines were synthesized from allylmercaptan through several steps. The structures of the intermediates and the final products where confirmed through IR, NMR and elemental analysis, these compounds may be of value in the treatment of diseases where free radicals are implicated in their pathogensis, since the thio and the amino groups of the synthesized compounds may act as free radical scavengers.
The synthesis of conducting polyaniline (PANI) nanocomposites containing various concentrations of functionalized single-walled carbon nanotubes (f-SWCNT) were synthesized by in situ polymerization of aniline monomer. The morphological and electrical properties of pure PANI and PANI/SWCNT nanocomposites were examined by using Fourier transform- infrared spectroscopy (FTIR), and Atomic Force Microscopy (AFM) respectively. The FTIR shows the aniline monomers were polymerized on the surface of SWCNTs, depending on the -* electron interaction between aniline monomers and SWCNTs. AFM analysis showed increasing in the roughness with increasing SWCNT content. The AC, DC electrical conductivities of pure PANI and PANI/SWCNT nanocomposite h
... Show MoreThis work involves synthesis of amides containing isoxazoline unit starting with
chalcone; 4-[3-(3‾-nitrophenyl)-2-propene- 1-one]-aniline[I]. 4-Aminoacetophenone was
reacted with 3-nitrobenzaldehyde in basic medium giving chalcone [I] by claisen-schemidt
reaction. The chalcone [I] was reacted with hydroxylamine hydrochloride giving isoxazoline
[II] in NaOH basic medium. The amides with structural formula [III]a-h were prepared by the
reaction of amino compounds ; isoxazoline [II] with different acid chlorides in dry pyridine
and using DMF as a solvent at 4
0
C. All the synthesized compounds have been characterized
by melting points , FTIR and
1
HMNR (of compound [III]a) spectroscopy.
Background The application of nanotechnology to biomedical surfaces is explained by the ability of cells to interact with nanometric features. The aim of this study was to consider the role of nanoscale topographic modification of CPTi dental implant using chemical etching method for the purpose of improving osseointegration. Materials and methods: Commercial pure titanium rod was machined into 20 dental implants. Each implant was machined in diameter about 3mm, length of 8mm (5mm was threaded part and 3mm was flat part). Implants were prepared and divided into 2 groups according to the types of surface modification method used: 1st group (10 implant) remained without nano surface modification (control), 2nd group include (10 implant) etche
... Show MoreThe main purpose of this paper is to define generalized Γ-n-derivation, study and investigate some results of generalized Γ-n-derivation on prime Γ-near-ring G and
In the present work, the feasibility of formation near-ideal ohmic behavior of In/n-Si contact efficiently by 300 s duration Nd:YAG pulsed laser processing has been recognized. Several laser pulses energy densities have been used, and the optimal energy density that gives best results is obtained. Topography of the irradiated region was extensively discussed and supported with micrographic illustrations to determine the surface condition that can play the important role in the ohmic contact quality. I-V characteristics in the forward and reverse bias and barrier height measurements have been studied for different irradiated samples to determine the laser energy density that gives best ohmic behavior. Comparing the current results with
... Show MoreIncreasing demands on producing environmentally friendly products are becoming a driving force for designing highly active catalysts. Thus, surfaces that efficiently catalyse the nitrogen reduction reactions are greatly sought in moderating air-pollutant emissions. This contribution aims to computationally investigate the hydrodenitrogenation (HDN) networks of pyridine over the γ-Mo2N(111) surface using a density functional theory (DFT) approach. Various adsorption configurations have been considered for the molecularly adsorbed pyridine. Findings indicate that pyridine can be adsorbed via side-on and end-on modes in six geometries in which one adsorption site is revealed to have the lowest adsorption energy (
... Show More