The speech recognition system has been widely used by many researchers using different
methods to fulfill a fast and accurate system. Speech signal recognition is a typical
classification problem, which generally includes two main parts: feature extraction and
classification. In this paper, a new approach to achieve speech recognition task is proposed by
using transformation techniques for feature extraction methods; namely, slantlet transform
(SLT), discrete wavelet transforms (DWT) type Daubechies Db1 and Db4. Furthermore, a
modified artificial neural network (ANN) with dynamic time warping (DTW) algorithm is
developed to train a speech recognition system to be used for classification and recognition
purposes. T
A new algorithm is proposed to compress speech signals using wavelet transform and linear predictive coding. Signal compression based on the concept of selecting a small number of approximation coefficients after they are compressed by the wavelet decomposition (Haar and db4) at a suitable chosen level and ignored details coefficients, and then approximation coefficients are windowed by a rectangular window and fed to the linear predictor. Levinson Durbin algorithm is used to compute LP coefficients, reflection coefficients and predictor error. The compress files contain LP coefficients and previous sample. These files are very small in size compared to the size of the original signals. Compression ratio is calculated from the size of th
... Show MoreIn any language there is some amount of difference between written language (planned) and spoken language (spontaneous). Since planned speech could be considered a form of written language, it could be inferred that there are also differences between planned speech and spontaneous speech. Some of these differences are very clear in terms of syntax, lexis, phonology and discourse. These differences are highlighted in order to make a clear distinction between spontaneous and planned speech.
This paper is an attempt to show the differences between the two forms of a language (written & spoken English) as far as number of linguistic features are tackle
... Show MoreIn Algeria, education is compulsory for males and females. This foundational decision was taken right after the independence of the country in 1962. Soon after, in 1963, the central government decided the Arabisation of the whole educational levels starting from primary school till university. At the same period, illiteracy-eradication programmes were launched by the Ministry of Education to get rid of this post-colonial scourge. In the administrative department (or Wilaya) of Adrar, former Tuat, young males and females attend Quranic schools (Zawaya) well before any formal education, that is as early as 4-5 years of age. The adult people who are not enrolled in formal classes could sit for non-formal ones. However, actual measurements a
... Show MoreThe petroleum sector has a significant influence on the development of multiphase detection sensor techniques; to separate the crude oil from water, the crude oil tank is used. In this paper, a measuring system using a simple and low cost two parallel plate capacitance sensor is designed and implemented based on a Micro controlled embedded system plus PC to automatically identify the (gas/oil) and (oil/water) dynamic multi-interface in the crude oil tank. The Permittivity differences of two-phase liquids are used to determine the interface of them by measuring the relative changes of the sensor’s capacitance when passes through the liquid’s interface. The experiment results to determine the liquid’s interface is sa
... Show MoreDiabetes is one of the increasing chronic diseases, affecting millions of people around the earth. Diabetes diagnosis, its prediction, proper cure, and management are compulsory. Machine learning-based prediction techniques for diabetes data analysis can help in the early detection and prediction of the disease and its consequences such as hypo/hyperglycemia. In this paper, we explored the diabetes dataset collected from the medical records of one thousand Iraqi patients. We applied three classifiers, the multilayer perceptron, the KNN and the Random Forest. We involved two experiments: the first experiment used all 12 features of the dataset. The Random Forest outperforms others with 98.8% accuracy. The second experiment used only five att
... Show More