Preferred Language
Articles
/
SBeJP48BVTCNdQwCmmaQ
Automatic illness prediction system through speech

Scopus Clarivate Crossref
View Publication
Publication Date
Mon Jan 01 2024
Journal Name
International Journal Of Mathematics And Computer Science
Artificial Intelligence Techniques to Identify Individuals through Palm Image Recognition

Artificial intelligence (AI) is entering many fields of life nowadays. One of these fields is biometric authentication. Palm print recognition is considered a fundamental aspect of biometric identification systems due to the inherent stability, reliability, and uniqueness of palm print features, coupled with their non-invasive nature. In this paper, we develop an approach to identify individuals from palm print image recognition using Orange software in which a hybrid of AI methods: Deep Learning (DL) and traditional Machine Learning (ML) methods are used to enhance the overall performance metrics. The system comprises of three stages: pre-processing, feature extraction, and feature classification or matching. The SqueezeNet deep le

... Show More
Scopus Crossref
Publication Date
Wed Apr 02 2014
Journal Name
Journal Of Theoretical And Applied Information Technology
TUMOR BRAIN DETECTION THROUGH MR IMAGES: A REVIEW OF LITERATURE

Today’s modern medical imaging research faces the challenge of detecting brain tumor through Magnetic Resonance Images (MRI). Normally, to produce images of soft tissue of human body, MRI images are used by experts. It is used for analysis of human organs to replace surgery. For brain tumor detection, image segmentation is required. For this purpose, the brain is partitioned into two distinct regions. This is considered to be one of the most important but difficult part of the process of detecting brain tumor. Hence, it is highly necessary that segmentation of the MRI images must be done accurately before asking the computer to do the exact diagnosis. Earlier, a variety of algorithms were developed for segmentation of MRI images by usin

... Show More
Scopus (45)
Scopus
Publication Date
Tue Jan 01 2013
Journal Name
Journal Of Engineering
Numerical Prediction of Bond-Slip Behavior in Simple Pull-out Concrete Specimen

In this study the simple pullout concrete cylinder specimen reinforced by a single steel bar was analyzed for bond-slip behavior. Three-dimension nonlinear finite element model using ANSYS program was employed to study the behavior of bond between concrete and plain steel reinforcement. The ANSYS model includes eight-noded isoperimetric brick element (SOLID65) to model the concrete cylinder while the steel reinforcing bar was modeled as a truss member (LINK8). Interface element (CONTAC52) was used in this analysis to model the bond between concrete and steel bar. Material nonlinearity due to cracking and/or crushing of concrete, and yielding of the steel reinforcing bar were taken into consideration during the analysis. The accuracy of this

... Show More
Publication Date
Tue Jan 30 2024
Journal Name
Iraqi Journal Of Science
Machine Learning Based Crop Yield Prediction Model in Rajasthan Region of India

     The present study investigates the implementation of machine learning models on crop data to predict crop yield in Rajasthan state, India. The key objective of the study is to identify which machine learning model performs are better to provide the most accurate predictions. For this purpose, two machine learning models (decision tree and random forest regression) were implemented, and gradient boosting regression was used as an optimization algorithm. The result clarifies that using gradient boosting regression can reduce the yield prediction mean square error to 6%. Additionally, for the present data set, random forest regression performed better than other models. We reported the machine learning model's performance using Mea

... Show More
Scopus Crossref
View Publication Preview PDF
Publication Date
Thu Jun 01 2017
Journal Name
Iosr Journal Of Computer Engineering
Crossref
View Publication
Publication Date
Sat Jan 01 2022
Journal Name
Journal Of The Mechanical Behavior Of Materials
Evaluation of a fire safety risk prediction model for an existing building
Abstract<p>Fire is one of the most critical risks devastating to human life and property. Therefore, humans make different efforts to deal with fire hazards. Many techniques have been developed to assess fire safety risks. One of these methods is to predict the outbreak of a fire in buildings, and although it is hard to predict when a fire will start, it is critical to do so to safeguard human life and property. This research deals with evaluating the safety risks of the existing building in the city of Samawah/Iraq and determining the appropriateness of these buildings in terms of safety from fire hazards. Twelve parameters are certified based on the National Fire Protection Association (NFPA20</p> ... Show More
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
View Publication
Publication Date
Sun Dec 30 2007
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Prediction of Fractional Hold-Up in RDC Column Using Artificial Neural Network

In the literature, several correlations have been proposed for hold-up prediction in rotating disk contactor. However,
these correlations fail to predict hold-up over wide range of conditions. Based on a databank of around 611
measurements collected from the open literature, a correlation for hold up was derived using Artificial Neiral Network
(ANN) modeling. The dispersed phase hold up was found to be a function of six parameters: N, vc , vd , Dr , c d m / m ,
s . Statistical analysis showed that the proposed correlation has an Average Absolute Relative Error (AARE) of 6.52%
and Standard Deviation (SD) 9.21%. A comparison with selected correlations in the literature showed that the
developed ANN correlation noticeably

... Show More
View Publication Preview PDF
Publication Date
Fri Apr 01 2022
Journal Name
Journal Of Engineering
Prediction of Shear Strength Parameters of Gypseous Soil using Artificial Neural Networks

The shear strength of soil is one of the most important soil properties that should be identified before any foundation design. The presence of gypseous soil exacerbates foundation problems. In this research, an approach to forecasting shear strength parameters of gypseous soils based on basic soil properties was created using Artificial Neural Networks. Two models were built to forecast the cohesion and the angle of internal friction. Nine basic soil properties were used as inputs to both models for they were considered to have the most significant impact on soil shear strength, namely: depth, gypsum content, passing sieve no.200, liquid limit, plastic limit, plasticity index, water content, dry unit weight, and initial

... Show More
Crossref (2)
Crossref
View Publication Preview PDF
Publication Date
Sat Jun 30 2018
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Prediction and Correlations of Residual Entropy of Superheated Vapor for Pure Compounds

Prediction of accurate values of residual entropy (SR) is necessary step for the
calculation of the entropy. In this paper, different equations of state were tested for the
available 2791 experimental data points of 20 pure superheated vapor compounds (14
pure nonpolar compounds + 6 pure polar compounds). The Average Absolute
Deviation (AAD) for SR of 2791 experimental data points of the all 20 pure
compounds (nonpolar and polar) when using equations of Lee-Kesler, Peng-
Robinson, Virial truncated to second and to third terms, and Soave-Redlich-Kwong
were 4.0591, 4.5849, 4.9686, 5.0350, and 4.3084 J/mol.K respectively. It was found
from these results that the Lee-Kesler equation was the best (more accurate) one

... Show More
View Publication Preview PDF
Publication Date
Thu Aug 30 2018
Journal Name
Iraqi Journal Of Science
Seismic Facies Analysis for Lithofacies Prediction, Okam Field of Niger Delta, Nigeria

Seismic facies analysis constrained with well log information have been used to predict lithofacies distribution across the Okam Field of Niger Delta. Density and gamma ray logs were cross-plotted and the seismic section was subdivided vertically into different seismic facies. The delineated lithologies, from well logs were correlated with seismic facies signatures using lines of intersection across the wells. Gamma ray and resistivity logs were used to identify the interfaces between the lithofacies and correlated across the field. Structural interpretation was carried out. Time slices were generated and examined at different intervals within the identified reservoirs. Stratigraphic related attribute and envelope were extracted on these

... Show More
View Publication Preview PDF